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POST THEOREM FOR VECTOR VALUED SEMIGROUPS

é. Cupona, S. Markovski, B. Janeva

Abstract. The main result of this paper is the following

THEOREM. Let m,k,p and q be integers such that m,k,q 2 1,
p=0. If K051 J) is an (m+p+q,m+p)-semigroup, then there is an
(m+1,m)-semigroup (P3;[ ]) such that QCP and

Ry s TRy o PNL Rl ()

for any a,b,€Q. (If p=0, then we write [b]] instead of (b]).)

0. We give here necessary preliminary definitions and re-
sults.

Let n and m be positive integers such that n-m=k21. A

mapping
1)[ Jo (Xq5eeesx) +— [x,---x]
from Q" to Q™ is called an associative (n,m)-operation iff the
following identity is satisfied for every j€{1,2,...,k}:
ny n+ky _ jr.j+nq n+k
[[x1]xn+1] 2 [x1[xj+1]xj+n+1]'

15 ? oy

Q is the r-th cartezian power of Q;xB is an abbreviation
for the ,string" sgquence XgXg4q+++Xg if a =B, and it is ,empty”
if a > B. Thus, (x§) stands for (xa,xa+1,...,x8).

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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valued semigroups is defined in [5]).

If [ ] is an (n,m)-operation, nonnecessarily associative,
then we can define an (m+sk,m)-operation [ ]%, for every s 2 1,
in the following way: [XT]1 = [x?] and

sk+mqs kr_sk+mys-1q .
E it Sl B ¢ | o Jif 8= 2
The following ,associative law" holds:

0.1. If (Q3;[ ]) is an (m+k,m)-semigroup, then for every

r,s 2 1, je{1,2,...,sk} the equality:

r+s :
k+ sk 1s

= P pyERm ek g

[xj rk+m3k
j+a

1y1 j+1]
is an identity on (Q;[ ]).
As a corollary we have:

0.2. If (Q;[ 1) is an (m+k,m)-semigroup then (Q;[ ]°%) is
an (m+sk,m)-semigroup for any s 2 1. (In the future, we will omit
the index s in [ ]°. Thus, an (m+1,m)-semigroup (Q;[ ]) induces
an (m+k,m)-semigroup (Q;[ ]) for any k = 1. We note that this
simplification in the notation is already used in the formula-

tion of Theorem.)

If (P;[ ]) is an (m+1,m)-semigroup and if QC P such that:

+k k k
(a]Tl )eqm‘f it [ m+ ]eQm,

1 a4,

then we say that Q is an (m+k,m)-subsemigroup of (P;[ ]9 Tn

this case, the restriction of [ ]k on Q induces an (m+k,m)-semi-

Thus, the conclusion of Theorem for p=0 can be stated as
follows:

THEOREM 1. Every (m+k,m)-semigroup is an (m+k,m)-subsemi-
group of an (m+l,m)-semigroup.

We note that the following generalization is a corollary
of Theorem 1:
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THEOREM 1°. Every (m+sk,m)-semigroup is an (m+sk,m)-subse-
migroup of an (m+k,m)-semigroup.

Also, in the case p >0, the following generalization is a
corollary of Theorem:

THEOREM 2. If m,p,q and k are positive integers such that k

semigroup (Q; [ ]) there is an (m+k,m)-semigroup (P;[ ]) such
that QCP and (*) holds for any a,,b,€Q.

We have named the subject of this work Post Theorem, beca-
use there is an analogy with corresponding Post’s Theorem for
polyadic groups ([4]). The question whether Post Theorem is true
for vector valued groups is a natural one, but we do not know
the answer till now.

Further on we assume that m =2 2, since our Theorem reduces
to the well known Post Theorems concerning embeddings of polya-
dic semigroups in (binary) semigroups (see, for example [2]) in
the zase p=0, m=1, and to the fact that every vector valued se-
migroup is a vector valued subsemigroup of a (binary) semigroup
([1]) in the case m=1, p>0.

We also note that in the proof of our results we use some
ideas from the paper [3], where a convenient description of free
vector valued semigroups is given.

1. Let (Q;[ 1) be an (m+p+q,m+p)-semigroup and let
Q[ ]i | s=>1, i€{1,2,...,m}}) be the absolutely free universal
algebra with a base Q, where [ ]? is an m+s-ary operator symbol
for any s 2 1 and any i€{1,2,...,m}. We will give below a des-
cription of this algebra.

If X is a non empty set, then X* is the set of all finite
sequences on X (including the empty sequence). (In other words,

X* is the free monoid (freely) generated by X.) If XEX K ov o X/,

noted by d(x). The empty sequence (denoted by 1) has, by defi-
nition, dimension zero. Also, we will write x? instead of

KyXg-e 'Xl‘"'
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We put Q, = Q, N = (1,2,...,m} and

{ueqQ# | d(u) 2 m+1}

(]
1

Qs = QU CoxNys

and
0=y Q
Thus we ﬁave:
1.1. u€Q iff ue€Q or u=(v,i), where v€Q*, d(v) 2 m+1, iGNm.
Now, the algebra (Q;{[ ]g I's > 1, i€N_}) is defined in the
following way:

If s 21, u,,u,5...,u €Q, and iGNm, then:

s+m
s+mys _ . S+m .
1 e PR S G vl 2

By putting:

s+my s m sS+my s _
[457)° = oM <= [5°73 = vy,

we obtain the absolutely free vector valued algebra (Q;[ ]S,s >1)
with a base Q, where [ ]S is an (m+s,m)-operation on Q.
Remark: We will use below the following notations:

(i) a,b,c,d (with or without indexes) will always denote
elements of Q.

(ii) x,y,z,u,v,w,t (with or without indexes) will always

denote elements of Q*.
(iii) (x,i)€Q will always mean that x€0#* is such that

d(x) =2 m+1.

(iv) Sometimes, for technical reasons, an element uieﬁ
will be denoted by (u},i), where u €Q, i€N_. (Note that (uT,i)€Q
by the construction of Q.)

We assume that the meaning of ,an appearence of u in v",
and yw is obtained from v by substitution of an appearence of u
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in v by t", are clear. Also, the validness of the two properties

below are evident.

1.2. If ueQ and if v is obtained when an appearence of
u“€Q in u is substituted by v“€Q, then veQ.

1.3. If (xyz,i)€Q, and (y,v)€Q, where d(xz) 2 1, then
u = (x(y,1)(y,2)...(y,m)z,i)€Q as well’.

We define two relations FE' and > in Q as follows.

If u,veQ, then
Hofoulp v iff v is obtained from u when an appearence of

(bT*p,i) is substituted by (aT+p+5q,i), where

i ub v iff v is obtained from u when an appearence of

[7*P*%9) = @"*P) in (Q3[ ]). (If p=0, then (B7,i)=b,.)

(xyz,j)€Q is substituted by (x(y,v)]::nz,j), where d(y)2m+1

Then, we define a relation - by:

s 3 IR B o R el A ¢ vPT-u Or Uby V OF Viy U, i.e. ~ is

1

the symmetric extension of the union of Pr and FE

Finally, let = be the reflexive and transitive extension

of ~, -iJen

=: u = v iff there exist wu,w1,...,wr€6, such that u=w_,
VML r=0, and wj_1 - wj for each je{1,2,...57}.

Thus:

1.4. = is an equivalence relation on Q. (Namely, it is the

smallest equivalence relation containing *Z' and Ff v

The following lemma is true:
LEMMA 1. (D7 P,i) = (TP i) <=> (b7'P,1) = (0'P,1).

Namely, Lemma 1 is a consequence of Lemma 2, given below.
To state Lemma 2, we will denote by Q~ the set

) . . .

') Sometimes we use the abbreviated notation
(x(y,v)™ ,2>1) for (x(y,1)...(y,m)z,i).

v=
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Q" = {(a"P,i) |aeQ, ielN }.
(If p=0, then Q7=Q.)

LEMMA 2. There exists a map £:Q + Q with the properties:

(i) &(u) = u, for every ueqQ”;

(ii) u ~ v and (g(u)€Q” or £(v)€Q”) =—> £(u) = E(v).
Let us assume that Lemma 2 is true, and (bT+P,i) « (c7'P,i)
Then, there exist wo,w1,...,wr€ﬁ such that w°=(bT+P,i),
wr=(cT*P,i) and Wiy 3 for each j€{1,2,...,r}. Sinc? wo,wreQ',
E(wg)=w°, E(wr)=wr, and ilso £(w°)=£(w,)=---=£(wr), i.e.
(B7'P,1) = w, = w = (7'P,1).

The proof of Lemma 2, that is the construction of the map
£, will be given in the next part of this paper. Here we will

show that Theorem is a consequence of Lemma 1.

First we state two propositions.

1.5. = is a congruence on the algebra (Q;[ ]5, s21).

Proof: It is clear that if u,ve€Q, x,y€Q* are such that
Ub=v, d(xy)=m+s-1, s 21, then (xuy,i)+;-(xvy,i) for every

iGNm, and this implies that = is a congruence.

Denote the factor algebra (Q/=;][ ]S, s21) by (P;][ ]S, g=1),
and the operation [ ]' by [ ]. If x,y,26Q0% are such that
d(y) 2m+1, d(xz) 21, then for every iGNm we have

(xyz,i)kf-(x(y,v)ﬁ=‘z,i),

i.e. (xyzyi) % (x(y,v}?=1z,iJ, and this implies that:

1.6. (P;[ ]) is an (m+1,m)-semigroup.

Now we are ready to show that Theorem is a consequence of
Lemma 1.

First we consider the case p=0. Thus, we have an (m+q,m)-

semigroup (Q;E ]1>. Then, Q°=Q, and by Lemma 1 we have: a = b =>

a = b. Therefore we can assume that QCP, and if [aT‘Sq] = (b':‘),
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then (aT+Sq,i) z b, for each ieNm, and this implies that

[257°9) = D) in (B3] D

Conversely, let [a™%9] = (®™ in (P;[ ]), i.e. (a]'%%,i) =
* b, for each iGNm, and let EéT+3q] = (cT) in (Q;[ 1). Then we
have T (aT*Sq,i) and thus b, = c; - By Lemma 1, this implies
b, = ¢;. This completes the proof of Theorem 1, i.e. of Theorem
for p=0.

It remains the case p > 0.

Let (Q;[ ]) be an (m+p+q,m+p)-semigroup, and let Q and
(P;[ ]) be defined as before. We have that a = u=—>a = u, for
neither of the relations arf-u, ulr-a, ak;u, uby a holds. Thus
we can assume that QCP.

If [aT+P+sq] = (™P) in (Q;[ 1), then (a7 'P*ed ) =
: (dT*P,i) for each ieN , and thus we have [aRTRYEA] . ([pIR)

in (P;[ ]). Assume that we also have [aT+p+Sq] = [c?+p] in
(P;[ ]). Then (b™*P,i) = (c?+P,i), and this, by Lemma 1, implies
that (bT*P,i) = (¢T*P,i), i.e. b, = ¢, for any v€{1,2,...,m+p}.

This completes the proof of Theorem for p > 0.
2. Here we will construct a ﬁapping £:Q - Q such that the
conditions of Lemma 2 will be satisfied.

Define the length |x| of an element x€Q* by
== lalE =it iy =lub v ekslvis
where (u,i)e€q.

The mapping E:Q + Q will be defined by induction on the
length of elements of Q as follows:

(0) g(a) = a.

Let u=(x,1)€Q, where x=x,X,::X_, x,,...,xseﬁ. Assume that
for every v€Q, such that |v|<|u|, £(v)€Q is well defined, and
that the following statements hold:

leCv)| = |v], E(E(V)) = E(v), E(v)Ev <= |g(v)]| < |v] (2.1)
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Thus &(x) is a well defined element of Q for every veNS,

and if we put
e e e i

then by (2.1) y #x iff |y|<|x|. Assume that y # x. Then wedefine
g(u) by:

(1) g(u) = g(y,i).

Assume, now, that y = x, and that x has the following form:
Y i x'(y1,1)(y=,21---(ym,m)x"

where x” has the least possible length. Now, E(u) is defined by
(ii1) gCu) = g(x7y,x"",i).
PEas aT+p+5q, s21 and if [§T+p+sq]=(bT+p), then g(u) is
defined by:
(iii) £ = ®T'P,i)
(Note that in the case p=0 (bT,i) denotes b;.)

If €(u) is not defined by either of the cases (0)-(iii),
then we put

(iv) g(u) = u.
Thus £:Q + Q is a well defined mapping.
We can extend £ to a mapping £%:Q% + Q* by the usual way.
Namely,
£%(1) =1, ueQ =—> g*(u) = £(u), £*(xy) = £X(xX)E*(y)
Further on we will write £ instead of E¥.

» where d(y ) 2m+1 for ueNm. Otherwise x is said to

ey ,mIx””
be reduced.

The following nine propositions are clear by the definiti-
on of .
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2.1 B G ) =25 b)),
2.2. E(u) # u <=> |g(w)]| < |u].
2.3. &(xyz) = E(x&(y)z).
2.4. (xyz,i)€Q —> E(xyz,i) = E(x&(y)z,i).
2255 1f p>0 then:
a) g(u)eQ <> ueQ;

m+r

By glal A=Ay 5y, vell .

g |
P
2.6. If (x,i)€Q and &(x,i) = (y,j)€Q, then i = j.

2.7. If (x,i)€Q is such that &(x,i)€Q, then &£(x,j)€Q for
every jGNm.

2.8. Let ve€Q be obtained from u€Q in such a way that one
appearence of u“€Q is substituted by v“€Q. If £(u”) = g(v”) then

E(u) = E(v).

2.9. If x=aP(y,M)z, 8 20, 2 2 2, &(y,d) = (¥,0)€Q, (x,1)eq,
then E(x,i)€Q".

2,405 Letixz-# 1, (yv,v)eﬁ and suppose that g(yu,v) =(yu,u)
or &(y ,v)€Q". Then:

E(x(y, ;1) -+ (y ,m)z,i) = &(xy,Kz,i) (2.2)

Proof: Let E(yv,u) = (?u,u). By induction on the lengths of
the elements of Q% it can be easily seen that (2.2) is true if
anyone of the following four conditions is satisfied:

a) E(xy1---ymz) # - Ptk (L
b) x is reducible;

c) y, #y, for some A 2 2;
d) v 1is not reduced.

In the case when none ofa), b), ¢), d) is true, then (2.2)
follows by the definition of .
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2.11. Let [@T*P*®9] = *P) in (Q;[ ]), and suppose that
m+p+sq

veQ is obtained from u€Q when an appearence of a, in u is
replaced by bT+p. Then
g(u)eQ” or £(v)EQ” => &(u) = &(v).

Proof: There exists an a =2 0 and UgsU seeesl s vo,v1,...,vaeﬁ
such that

R EUasVeE Vg

By = (xlul+1zk’ll)’ Vo h (xlvl+1zk’ll)’ 0)r<a (2.3)

5 m+p+sq . o m+p y
Uy (xua‘ Za,la), N (xub1 Za,la).

It is clear that if one of the following conditions
a) E(xo...xazu...zo) 7 xo...xazu...zo’

b) Xy is reducible for some 2,
is satisfied, then we can obtain a sequence of elements of Q: G%E;,

u1,...,3n, F:Uo,31,...,3a such that (2.3) is satisfied, and moreover
E(u) = E(W, &(v) = (W), [ul<|ul, |¥V]<]|v],

which implies g(u)=g£(v) by induction.
Thus we can assume that:
a’) g(xl) = X g(zl) = 2, for any a, and
b”) x, is reduced for any a.

If there exists a A such that g(ul) = 5(V1>’ then by 2.8
we have E(u) = g(v).

Consider the case a = 0, i.e.
uE ke P00y, v s e P

r_M+p+s m+ .

and -fal " PTE9] = ApT Py un 0 1)
If z is reducible then we can again obtain two elements
o= (xaT+p+qu’,i), T (be+pz',i)

such that
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E(w) = &M, Ev) = EW), JTl <lul, I¥] <|vl

and the proof follows by induction. So, we can assume that z is
reduced.

Now, E(u)EQ” or &£(v)eEQ”, iff x=c? z=d: where B+y = rq,

1,
r 20. Then we have:

( char:l+p+sqdr] =
( IICE Ea’?+v+sq]dr] ,i) =
¢ [Ap™*PaY],i) =

= E(v):

g(u)

n

There remains the case o >0. By the same argument as in the
case a = 0 we can assume that z, is reduced. Also as in the case
a = 0 we can conclude that

E(um) # u, TEE g(uu) = g(va)eq 5

and by 2.8 we will have g(u) = g(v).

Thus, we can assume that g(ua) = U, and then we will also
have E(v.) = v . :
o a

The fact that g(u,)€Q” or £(v,)€Q” and o« >0 implies that
gE(u,) # u,, §(vy) # v,. Let B be the largest number such that

E(us) =1, o £(vs) £ Vg Then we have B < a and

B

gCu Y=

B+1 B+1? (v TeiE, 2

B+1 B+1

Since it is assumed that Xg is reduced, from the equalities

ug = (xﬂu8+128’18}’ Vg = (XBVB+1ZB’13)
it follows that g(ue) £ ug or s(vB} # Vg iff one of the follo-
wing three statements hold:

1) Xg = X (t1,1)--°(tu_1,v-1}, i8+1 R
zg = (tu+1’“+1)"'(tm’m)z <
2) iB+1 g B 2y = (ta,ZJ---(tm,m)z';
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3) zg = z'(t,,i)--.(tm,m)z” and x8u8+1z‘, vaB+1z’ are

reduced.

In the case 1) we have

E(uﬁ) = g(x7t .z ,18) E(vs)
which implies &(u,) = &(v_ ) by 2.8

-

In the case 2) we have
E(us) = E(uB), E(VB) = E(VB),
iEBI<|uBQ, ]VB! = |v8(,

where

u e Vg = (x8x8+1v5+2z8+1z ,15)

and the conclusion follows by induction.

B = (x8x3+gus+=zs+1z', B

In the case 3) we have the same situation as in 2) where

ug = (xsu8+1z t,2 ,13), Worr (x3u8+‘z t,z ,1B).

This completes the proof of 2.11.
As a corollary from 2.8 we obtain the following proposition:
2.12. If u,v€Q are such that uby v, then Elu): = Elv).
To complete the proof of Lemma 2 we need the following pro-
position:
2.13. Let u,v€Q and uby v. If £(u)€Q” or &(v)EQ”, then
E(u) = E(v).

Proof: From uls v it follows that there exist an a = 0,
ul,vleﬁ such that

TS R

Uy = (xnu1+1zl,1x), vy © (XAVA+1ZA’1A)’ 0<x<a

u, = (xayz“,ia), Vi = (xa(y,l) "'(y,m)zu,ia).

By the same arguments as in the proof of 2.11 we can assu-
me that:
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a) e(y) = vy, &(xl) = E(zl) m7 for evéry A

13
b) X, is reduced for every A.
If g(y,v)¢Q' or g(y,v) = (y,v) then by 2.10 we have

E(uu) = i{vu), and, by 2.8, &(u) = g(v).

A’

Thus we can assume that £(y,v) = (bT+p,v}eQ‘ and
E(y,v) # (y,v)

Let y be réducible and let y = y‘(yi,l)---(ym,m)y", where

y~ is reduced. Then, x“y’ is reduced, for if it were reducible,
then we would have

X 5% x'(t1,1)°--(tT_1,7-1), = (tv,y)-..(tm,m}y"', vz

but this is impossible by 2.9.

Thus we have:

gCu ) = g(u), lv) £(v,)
where

Gu = (xuy’y1y”za,ia), ;u = (xa<y‘y1y",1)---(y‘y‘y”,m)za,i

and this implies there exist u,ve€Q such that
glu) = g(@, &(v) = &V, "|u] < |u], [V]<]|v], uHV.

Thus, the conclusion follows by induction.

Therefore weé can assume that y is reduced. Then £(y,v)€Q”,
E(y,v) # (y,v) is possible only if y = aT+p*sq, s =3, If
[@}™P**9) = ™P) in (Q;[ ]), and if we put

m+ :
V.= (xb™Pz ,i)
a o 1 a a

Vs (xlv1+1zk,lz)
we obtain that g(v) = g(v,), and by 2.11 we have g(u) = &(V,).
This completes the proof of 2.13.

Finally conclude that (i) of Lemma 2 is a corollary of
2.5 b), and (ii) is a corollary of 2.12 and 2.13.
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3. We make a few more remarks.

The (m+1,m)-semigroup (P;[ ]), obtained in 1, has a univer-
sal property of this kind:

If (P";[ ]17) is any (m+1,m)-semigroup, such that QC P” and

[[a?+P+q] = (bT+p) in ([ ]) <=
<= [aT PM]Z = TP 40 @25 1D

for all av,vaQ, then there exists a unique homomorphism
g:(P;[ 1) » (P*;[ ]°), such that &(a)=a for all a€qQ.

It should be noted that when Theorem 1~ and Theorem 2 are
considered, the (m+k,m)-semigroup used there has not this uni-
versal property. Nevertheless, by slightly modified construction
of Q, one can get an (m+k,m)-semigroup with wanted universal
property. Namely, we first construct the absolutely free vector

valued algebra Q” of type {[ ]° [s 21} freely generated by Q,

where [ ]° is a symbol for an (m+sk,m)-operation for all s >1.
Further, we define the relations |13 rz, = in the same manner

as in 1. In such a way the obtained (m+k,m)-semigroup (P”;[ ]7)

is the wanted universal (m+k,m)-semigroup for the given (m+p+q,
m+p)-semigroup (Q;[[ ]). We can realize a proof of this fact al-
most without any changes, but we actually do not need such a
proof, since the universal property of (P”,[ ]7) is clear if we
have had proved Lemma 1 for k = 1.
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