PROCEEDINGS OF THE CONFERENCE "ALGEBRA AND LOGIC", CETINJE 1986.

POST THEOREM FOR VECTOR VALUED SEMIGROUPS

G. Čupona, S. Markovski, B. Janeva

Abstract. The main result of this paper is the following THEOREM. Let m,k,p and q be integers such that m,k,q \geq 1, p \geq 0. If (Q;[]) is an (m+p+q,m+p)-semigroup, then there is an (m+1,m)-semigroup (P;[]) such that Q \subseteq P and

$$[a_1^{m+p+q}] = (b_1^{m+p}) \iff [a_1^{m+p+q}] = [b_1^{m+p}], \quad (*)$$

 $\underline{\text{for any a}}_{\nu}, b_{\lambda} \in \mathbb{Q}. \ (\underline{\text{If p=0}}, \ \underline{\text{then we write}} \ [b_{1}^{m}] \ \underline{\text{instead of}} \ (b_{1}^{m}).)$

0. We give here necessary preliminary definitions and results.

Let n and m be positive integers such that $n-m=k \ge 1$. A mapping

$$[\]:\ (x_1,\ldots,x_n)\ \longmapsto\ [x_1\ldots x_n]$$

 $\text{from Q}^n \text{ to Q}^{\text{m}^{1}} \text{ is called an associative (n,m)-operation iff the}$ following identity is satisfied for every je{1,2,...,k}:

$$[[x_1^n]x_{n+1}^{n+k}] = [x_1^j[x_{j+1}^{j+n}]x_{j+n+1}^{n+k}].$$

In this case we say that (Q;[]) is an (n,m)-semigroup, or a vector valued semigroup. (We remark that the notion of vector

or is the r-th cartezian power of $Q; x_{\alpha}^{\beta}$ is an abbreviation for the "string" sequence $x_{\alpha}x_{\alpha+1}...x_{\beta}$ if $\alpha \leq \beta$, and it is "empty" if $\alpha > \beta$. Thus, (x_{α}^{β}) stands for $(x_{\alpha}, x_{\alpha+1}, ..., x_{\beta})$.

This paper is in final form and no version of it will be submitted for publication elsewhere.

valued semigroups is defined in [5]).

If [] is an (n,m)-operation, nonnecessarily associative, then we can define an (m+sk,m)-operation []^S, for every s \geq 1, in the following way: $[x_1^n]^1 = [x_1^n]$ and

$$[x_1^{sk+m}]^s = [x_1^k[x_{k+1}^{sk+m}]^{s-1}] \text{ if } s \ge 2$$

The following "associative law" holds:

0.1. If (Q;[]) is an (m+k,m)-semigroup, then for every $r,s \ge 1$, $j\in\{1,2,\ldots,sk\}$ the equality:

$$[x_{1}^{j}y_{1}^{rk+m}x_{j+1}^{sk}]^{r+s} = [x_{1}^{j}[y_{1}^{rk+m}]^{r}x_{j+1}^{sk}]^{s}$$

is an identity on (Q;[]).

As a corollary we have:

<u>0.2. If (Q;[]) is an (m+k,m)-semigroup then (Q;[]^S) is an (m+sk,m)-semigroup for any s \geq 1. (In the future, we will omit the index s in []^S. Thus, an (m+1,m)-semigroup (Q;[]) induces an (m+k,m)-semigroup (Q;[]) for any k \geq 1. We note that this simplification in the notation is already used in the formulation of Theorem.)</u>

If (P;[]) is an (m+1,m)-semigroup and if $Q\subseteq P$ such that:

$$(a_1^{m+k}) \in Q^{m+k} \Longrightarrow [a_1^{m+k}] \in Q^m,$$

then we say that Q is an (m+k,m)-subsemigroup of (P;[]). In this case, the restriction of $[]^k$ on Q induces an (m+k,m)-semigroup (Q;[]), called (m+k,m)-subsemigroup of (P;[]).

Thus, the conclusion of Theorem for p=0 can be stated as follows:

THEOREM 1. Every (m+k,m)-semigroup is an (m+k,m)-subsemi-group of an (m+1,m)-semigroup.

We note that the following generalization is a corollary of Theorem 1:

THEOREM 1'. Every (m+sk,m)-semigroup is an (m+sk,m)-subsemigroup of an (m+k,m)-semigroup.

Also, in the case p>0, the following generalization is a corollary of Theorem:

THEOREM 2. If m,p,q and k are positive integers such that k is a divisor of the both p and q, then for every (m+p+q,m+p)semigroup (Q;[]) there is an (m+k,m)-semigroup (P;[]) such that $Q\subseteq P$ and (*) holds for any $a_m,b_n\in Q$.

We have named the subject of this work Post Theorem, because there is an analogy with corresponding Post's Theorem for polyadic groups ([4]). The question whether Post Theorem is true for vector valued groups is a natural one, but we do not know the answer till now.

Further on we assume that $m \ge 2$, since our Theorem reduces to the well known Post Theorems concerning embeddings of polyadic semigroups in (binary) semigroups (see, for example [2]) in the case p=0, m=1, and to the fact that every vector valued semigroup is a vector valued subsemigroup of a (binary) semigroup ([1]) in the case m=1, p>0.

We also note that in the proof of our results we use some ideas from the paper [3], where a convenient description of free vector valued semigroups is given.

1. Let (Q; []) be an (m+p+q,m+p)-semigroup and let $(\overline{\mathbb{Q}}; \{[\]_i^s \mid s \ge 1, \ i \in \{1,2,\ldots,m\}\})$ be the absolutely free universal algebra with a base Q, where $[\]_i^s$ is an m+s-ary operator symbol for any $s \ge 1$ and any $i \in \{1,2,\ldots,m\}$. We will give below a description of this algebra.

If X is a non empty set, then X* is the set of all finite sequences on X (including the empty sequence). (In other words, X* is the free monoid (freely) generated by X.) If $x=x_1x_2...x_r$, where x_v eX, then r is said to be the <u>dimension</u> of x, and is denoted by d(x). The empty sequence (denoted by 1) has, by definition, dimension zero. Also, we will write x_1^r instead of $x_1x_2...x_r$.

We put
$$Q_0 = Q$$
, $N_m = \{1,2,...,m\}$ and
$$C_S = \{u \in Q_S^* \mid d(u) \ge m+1\}$$

$$Q_{S+1} = Q_S \bigcup C_S \times N_m,$$

and

$$\overline{\mathbb{Q}} = \bigcup_{s \geq 0} \mathbb{Q}_s.$$

Thus we have:

1.1. $ue\overline{\mathbb{Q}}$ iff $ue\mathbb{Q}$ or u=(v,i), where $ve\overline{\mathbb{Q}}^*$, $d(v) \ge m+1$, $ie\mathbb{N}_m$. Now, the algebra $(\overline{\mathbb{Q}};\{[\]_i^s \mid s \ge 1,\ ie\mathbb{N}_m\})$ is defined in the following way:

If
$$s \ge 1$$
, $u_1, u_2, \dots, u_{s+m} \in \overline{\mathbb{Q}}$, and $i \in \mathbb{N}_m$, then:
$$[u_1^{s+m}]_i^s = (u_1^{s+m}, i).$$

By putting:

$$[u_1^{S+m}]^S = (v_1^m) \iff [u_1^{S+m}]_i^S = v_i,$$

we obtain the absolutely free vector valued algebra $(\overline{Q};[]^S,s \ge 1)$ with a base Q, where $[]^S$ is an (m+s,m)-operation on \overline{Q} .

Remark: We will use below the following notations:

- (i) a,b,c,d (with or without indexes) will always denote elements of Q.
- (ii) x,y,z,u,v,w,t (with or without indexes) will always denote elements of $\overline{\mathbb{Q}}^{*}$.
- (iii) $(x,i)\in\overline{\mathbb{Q}}$ will always mean that $x\in\overline{\mathbb{Q}}^*$ is such that $d(x)\geq m+1$.
- (iv) Sometimes, for technical reasons, an element $u_i \in \overline{\mathbb{Q}}$ will be denoted by (u_1^m,i) , where $u_v \in \overline{\mathbb{Q}}$, $i \in \mathbb{N}_m$. (Note that $(u_1^m,i) \notin \overline{\mathbb{Q}}$ by the construction of $\overline{\mathbb{Q}}$.)

We assume that the meaning of "an appearence of u in v", and "w is obtained from v by substitution of an appearence of u

in v by t", are clear. Also, the validness of the two properties below are evident.

We define two relations $\vdash_{\overline{1}}$ and $\vdash_{\overline{2}}$ in $\overline{\mathbb{Q}}$ as follows. If $u, v \in \overline{\mathbb{Q}}$, then

 $\frac{1}{1}$: $\frac{1}{1}$ v iff v is obtained from u when an appearance of $\frac{1}{1}$; $\frac{1}{1}$ v iff v is obtained from u when an appearance of $\frac{1}{1}$; $\frac{1}{1}$ v iff v is obtained from u when an appearance of $\frac{1}{1}$; $\frac{1}{1}$; $\frac{1}{1}$ v iff v is obtained from u when an appearance of $\frac{1}{1}$; $\frac{1}{$

 $\frac{1}{2}$: $u + \frac{1}{2}$ v iff v is obtained from u when an appearence of $(xyz,j) \in \overline{\mathbb{Q}}$ is substituted by $(x(y,v)_{v=1}^{m}z,j)$, where $d(y) \geq m+1$. Then, we define a relation \sim by:

-: u - v iff $u \vdash_{\overline{1}} v$ or $v \vdash_{\overline{1}} u$ or $u \vdash_{\overline{2}} v$ or $v \vdash_{\overline{2}} u$, i.e. - is the symmetric extension of the union of $\vdash_{\overline{1}}$ and $\vdash_{\overline{2}}$.

Finally, let \approx be the reflexive and transitive extension of \sim , i.e.

*: $u * v ext{ iff there exist } w_0, w_1, \dots, w_r \in \overline{\mathbb{Q}}, ext{ such that } u = w_0, v = w_r, r \ge 0, ext{ and } w_{j-1} \sim w_j ext{ for each } j \in \{1, 2, \dots, r\}.$

Thus:

 $\underline{1.4}$. z is an equivalence relation on $\overline{\mathbb{Q}}$. (Namely, it is the smallest equivalence relation containing $\frac{1}{1}$ and $\frac{1}{2}$.)

The following lemma is true:

LEMMA 1.
$$(b_1^{m+p}, i) \approx (c_1^{m+p}, i) \iff (b_1^{m+p}, i) = (c_1^{m+p}, i)$$
.

Namely, Lemma 1 is a consequence of Lemma 2, given below. To state Lemma 2, we will denote by Q´ the set

Sometimes we use the abbreviated notation $(x(y,v)_{v=1}^{m}z,i)$ for (x(y,1)...(y,m)z,i).

$$Q' = \{(a_1^{m+p}, i) | a_1 \in Q, i \in \mathbb{N}_m\}.$$

(If p=0, then Q'=Q.)

LEMMA 2. There exists a map $\xi:\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ with the properties:

- (i) ξ(u) = u, for every u60';
- (ii) $u \sim v$ and $(\xi(u) \in Q' \text{ or } \xi(v) \in Q') \implies \xi(u) = \xi(v)$.

Let us assume that Lemma 2 is true, and $(b_1^{m+p},i) \approx (c_1^{m+p},i)$. Then, there exist $w_0,w_1,\ldots,w_r\in\overline{\mathbb{Q}}$ such that $w_0=(b_1^{m+p},i)$, $w_r=(c_1^{m+p},i)$ and $w_{j-1}\sim w_j$ for each $j\in\{1,2,\ldots,r\}$. Since $w_0,w_r\in\mathbb{Q}$, $\xi(w_0)=w_0$, $\xi(w_r)=w_r$, and also $\xi(w_0)=\xi(w_1)=\ldots=\xi(w_r)$, i.e. $(b_1^{m+p},i)=w_0=w_r=(c_1^{m+p},i)$.

The proof of Lemma 2, that is the construction of the map ξ , will be given in the next part of this paper. Here we will show that Theorem is a consequence of Lemma 1.

First we state two propositions.

1.5. \approx is a congruence on the algebra (\overline{Q} ; []^S, $s \ge 1$).

<u>Proof</u>: It is clear that if $u,v\in\overline{\mathbb{Q}}$, $x,y\in\overline{\mathbb{Q}}^*$ are such that $u\vdash_{\alpha}v$, d(xy)=m+s-1, $s\geq 1$, then $(xuy,i)\vdash_{\alpha}(xvy,i)$ for every $i\in\mathbb{N}_m$, and this implies that z is a congruence.

Denote the factor algebra $(\overline{\mathbb{Q}}/z;[\]^S,\ s\geq 1)$ by $(P;[\]^S,\ s\geq 1)$, and the operation $[\]^1$ by $[\]$. If $x,y,z\in \overline{\mathbb{Q}}*$ are such that $d(y)\geq m+1,\ d(xz)\geq 1$, then for every $i\in \mathbb{N}_m$ we have

$$(xyz,i) \vdash_{\overline{2}} (x(y,v)_{v=1}^{m} z,i),$$

i.e. $(xyz,i) \approx (x(y,v)_{y=1}^{m}z,i)$, and this implies that:

1.6. (P;[]) is an (m+1,m)-semigroup.

Now we are ready to show that Theorem is a consequence of Lemma 1.

First we consider the case p=0. Thus, we have an (m+q,m)semigroup (Q;[]). Then, Q'=Q, and by Lemma 1 we have: a z b \Longrightarrow a = b. Therefore we can assume that Q \subseteq P, and if $[a_1^{m+sq}] = (b_1^m)$,

then $(a_1^{m+sq},i) \approx b_i$ for each $i \in \mathbb{N}_m$, and this implies that $[a_1^{m+sq}] = (b_1^m)$ in (P;[]).

Conversely, let $[a_1^{m+sq}] = (b_1^m)$ in (P;[]), i.e. $(a_1^{m+sq},i) \approx b_1$ for each $i \in N_m$, and let $[a_1^{m+sq}] = (c_1^m)$ in (Q;[]). Then we have $c_1 \approx (a_1^{m+sq},i)$ and thus $b_1 \approx c_1$. By Lemma 1, this implies $b_1 = c_1$. This completes the proof of Theorem 1, i.e. of Theorem for p=0.

It remains the case p > 0.

Let (Q; []) be an (m+p+q,m+p)-semigroup, and let \overline{Q} and (P; []) be defined as before. We have that a z u \Longrightarrow a = u, for neither of the relations $a \vdash_{\overline{1}} u$, $u \vdash_{\overline{1}} a$, $a \vdash_{\overline{2}} u$, $u \vdash_{\overline{2}} a$ holds. Thus we can assume that $Q \subseteq P$.

If $[a_1^{m+p+sq}] = (b_1^{m+p})$ in (Q;[]), then $(a_1^{m+p+sq},i) \approx z$ (b_1^{m+p},i) for each $i \in \mathbb{N}_m$, and thus we have $[a_1^{m+p+sq}] = [b_1^{m+p}]$ in (P;[]). Assume that we also have $[a_1^{m+p+sq}] = [c_1^{m+p}]$ in (P;[]). Then $(b_1^{m+p},i) \approx (c_1^{m+p},i)$, and this, by Lemma 1, implies that $(b_1^{m+p},i) = (c_1^{m+p},i)$, i.e. $b_{\nu} = c_{\nu}$ for any $\nu \in \{1,2,\ldots,m+p\}$. This completes the proof of Theorem for p > 0.

2. Here we will construct a mapping $\xi:\overline{\mathbb{Q}}$ → $\overline{\mathbb{Q}}$ such that the conditions of Lemma 2 will be satisfied.

Define the length |x| of an element $x \in \overline{\mathbb{Q}}^*$ by

$$|1| = 0$$
, $|a| = 1$, $|(u,i)| = |u|$, $|tv| = |t| + |v|$,

where $(u,i)\in\overline{Q}$.

The mapping $\xi:\overline{\mathbb{Q}}\to\overline{\mathbb{Q}}$ will be defined by induction on the length of elements of $\overline{\mathbb{Q}}$ as follows:

(0)
$$\xi(a) = a$$
.

Let $u=(x,i)\in\overline{\mathbb{Q}}$, where $x=x_1x_2\cdots x_S$, $x_1,\ldots,x_S\in\overline{\mathbb{Q}}$. Assume that for every $v\in\overline{\mathbb{Q}}$, such that |v|<|u|, $\xi(v)\in\overline{\mathbb{Q}}$ is well defined, and that the following statements hold:

$$|\xi(v)| \le |v|, \ \xi(\xi(v)) = \xi(v), \ \xi(v) \neq v \iff |\xi(v)| < |v|$$
 (2.1)

Thus $\xi(x_{_{\mathbb V}})$ is a well defined element of $\overline{\mathbb Q}$ for every $\nu \in \mathbb N_{_{\mathbf S}},$ and if we put

$$y = \xi(x_1) \cdots \xi(x_S)$$

then by (2.1) $y \neq x$ iff |y| < |x|. Assume that $y \neq x$. Then we define $\xi(u)$ by:

(i)
$$\xi(u) = \xi(y,i)$$
.

Assume, now, that y = x, and that x has the following form:

$$x = x'(y_1, 1)(y_2, 2) \cdots (y_m, m)x''$$

where x' has the least possible length. Now, $\xi(u)$ is defined by

(ii)
$$\xi(u) = \xi(x'y_*x'',i)$$
.

If $x = a_1^{m+p+sq}$, $s \ge 1$ and if $[a_1^{m+p+sq}] = (b_1^{m+p})$, then $\xi(u)$ is defined by:

(iii)
$$\xi(u) = (b_1^{m+p}, i)$$

(Note that in the case p=0 (b_1^m ,i) denotes b_i .)

If $\xi(u)$ is not defined by either of the cases (0)-(iii), then we put

(iv)
$$\xi(u) = u$$
.

Thus $\xi:\overline{\mathbb{Q}}\to\overline{\mathbb{Q}}$ is a well defined mapping.

We can extend ξ to a mapping $\xi^*\!:\!\overline{\mathbb{Q}}^*\!\to\!\overline{\mathbb{Q}}^*$ by the usual way. Namely,

$$\xi^*(1) = 1$$
, $u\theta \overline{Q} \Longrightarrow \xi^*(u) = \xi(u)$, $\xi^*(xy) = \xi^*(x)\xi^*(y)$

Further on we will write ξ instead of ξ *.

We say that x is <u>reducible</u> if $\xi(x) \neq x$ or $x=x'(y_1,1)\cdots (y_m,m)x''$, where $d(y_v) \geq m+1$ for $v \in \mathbb{N}_m$. Otherwise x is said to be <u>reduced</u>.

The following nine propositions are clear by the definition of ξ .

- 2.1. $\xi(\xi(u)) = \xi(u)$.
- 2.2. $\xi(u) \neq u \iff |\xi(u)| < |u|$.
- 2.3. $\xi(xyz) = \xi(x\xi(y)z)$.
- 2.4. $(xyz,i) \in \overline{Q} \implies \xi(xyz,i) = \xi(x\xi(y)z,i)$.
- 2.5. If p > 0 then:
 - a) $\xi(u) \in Q \iff u \in Q;$
 - b) $\xi(a_1^{m+r},i) = (a_1^{m+r},i), r \in \mathbb{N}_D$.
- 2.6. If $(x,i)\in\overline{\mathbb{Q}}$ and $\xi(x,i) = (y,j)\notin\mathbb{Q}$, then i = j.

- $\underline{2.9}. \ \underline{\text{If}} \ x=a_1^{\beta}(y,\lambda)z, \ \beta \geq 0, \ \lambda \geq 2, \ \xi(y,\lambda) = (\overline{y},\lambda) \in \mathbb{Q}, \ (x,i) \in \overline{\mathbb{Q}},$ then $\xi(x,i) \notin \mathbb{Q}^*$.
- $\frac{2.10. \text{ Let } xz \neq 1, \ (y_{y}, v) \in \overline{Q} \text{ and suppose that } \xi(y_{y}, v) = (y_{y}, v)}{\text{or } \xi(y_{y}, v) \notin \overline{Q}^{*}. \text{ Then:}}$

$$\xi(x(y_1,1)\cdots(y_m,m)z,i) = \xi(xy_1z,i)$$
 (2.2)

<u>Proof</u>: Let $\xi(y_{\nu}, \nu) = (\overline{y}_{\nu}, \nu)$. By induction on the lengths of the elements of $\overline{\mathbb{Q}}^*$ it can be easily seen that (2.2) is true if anyone of the following four conditions is satisfied:

- a) $\xi(xy_1 \cdots y_m z) \neq xy_1 \cdots y_m z;$
- b) x is reducible;
- c) $\overline{y}_{\lambda} \neq y_{\lambda}$ for some $\lambda \geq 2$;
- d) y is not reduced.

In the case when none of a), b), c), d) is true, then (2.2) follows by the definition of ξ .

$$\xi(u) \in Q'$$
 or $\xi(v) \in Q' \Longrightarrow \xi(u) = \xi(v)$.

<u>Proof</u>: There exists an $\alpha \ge 0$ and $u_0, u_1, \dots, u_{\alpha}, v_0, v_1, \dots, v_{\alpha} \in \overline{\mathbb{Q}}$ such that

$$u = u_0, v = v_0$$

$$u_{\lambda} = (x_{\lambda}u_{\lambda+1}z_{\lambda}, i_{\lambda}), \quad v_{\lambda} = (x_{\lambda}v_{\lambda+1}z_{\lambda}, i_{\lambda}), \quad 0 \le \lambda < \alpha$$

$$u_{\alpha} = (x_{\alpha}a_{1}^{m+p+sq}z_{\alpha}, i_{\alpha}), \quad v_{\alpha} = (x_{\alpha}b_{1}^{m+p}z_{\alpha}, i_{\alpha}).$$
(2.3)

It is clear that if one of the following conditions

a)
$$\xi(x_0 \cdots x_\alpha z_\alpha \cdots z_0) \neq x_0 \cdots x_\alpha z_\alpha \cdots z_0$$
,

b) x, is reducible for some λ ,

is satisfied, then we can obtain a sequence of elements of $\overline{\mathbb{Q}}$: $\overline{\mathbb{u}}_{\bullet}$, $\overline{\mathbb{u}}_{\bullet}$, $\overline{\mathbb{v}}_{\bullet}$, $\overline{\mathbb{v}_{\bullet}}$, $\overline{\mathbb{v}}_{\bullet}$, $\overline{\mathbb{v}_{\bullet}}$, $\overline{\mathbb{v}_{\bullet$

$$\xi(u) = \xi(\overline{u}), \ \xi(v) = \xi(\overline{v}), \ |\overline{u}| < |u|, \ |\overline{v}| < |v|,$$

which implies $\xi(u)=\xi(v)$ by induction.

Thus we can assume that:

a')
$$\xi(x_{\lambda}) = x_{\lambda}$$
, $\xi(z_{\lambda}) = z_{\lambda}$ for any λ , and

b') x_{λ} is reduced for any λ .

If there exists a λ such that $\xi(u_{\lambda}) = \xi(v_{\lambda})$, then by $\underline{2.8}$ we have $\xi(u) = \xi(v)$.

Consider the case $\alpha = 0$, i.e.

$$u = (xa_1^{m+p+sq}z,i), v = (xb_1^{m+p}z,i)$$

and $[a_1^{m+p+sq}] = (b_1^{m+p})$ in (Q;[]).

If z is reducible then we can again obtain two elements

$$\overline{u} = (xa_1^{m+p+sq}z',i), \quad \overline{v} = (xb_1^{m+p}z',i)$$

such that

$$\xi(u) = \xi(\overline{u}), \ \xi(v) = \xi(\overline{v}), \ |\overline{u}| < |u|, |\overline{v}| < |v|$$

and the proof follows by induction. So, we can assume that z is reduced.

Now, $\xi(u)\in Q'$ or $\xi(v)\in Q'$, iff $x=c_1^\beta$, $z=d_1^\gamma$ where $\beta+\gamma=rq$, $r\geq 0$. Then we have:

$$\xi(u) = ([c_1^{\beta} a_1^{m+p+sq} d_1^{\gamma}], i) =$$

$$= ([c_1^{\beta} [a_1^{m+p+sq}] d_1^{\gamma}], i) =$$

$$= ([c_1^{\beta} b_1^{m+p} d_1^{\gamma}], i) =$$

$$= \xi(v).$$

There remains the case $\alpha>0.$ By the same argument as in the case α = 0 we can assume that z_{α} is reduced. Also as in the case α = 0 we can conclude that

$$\xi(u_{\alpha}) \neq u_{\alpha}$$
 iff $\xi(u_{\alpha}) = \xi(v_{\alpha}) \in Q^{*}$,

and by 2.8 we will have $\xi(u) = \xi(v)$.

Thus, we can assume that $\xi(u_\alpha)=u_\alpha,$ and then we will also have $\xi(v_\alpha)=v_\alpha.$

The fact that $\xi(u_o) \in Q'$ or $\xi(v_o) \in Q'$ and $\alpha > 0$ implies that $\xi(u_o) \neq u_o$, $\xi(v_o) \neq v_o$. Let β be the largest number such that $\xi(u_g) \neq u_g$ or $\xi(v_g) \neq v_g$. Then we have $\beta < \alpha$ and

$$\xi(u_{\beta+1}) = u_{\beta+1}, \quad \xi(v_{\beta+1}) = v_{\beta+1}.$$

Since it is assumed that x_g is reduced, from the equalities

$$\mathbf{u}_{\beta} = (\mathbf{x}_{\beta}\mathbf{u}_{\beta+1}\mathbf{z}_{\beta},\mathbf{i}_{\beta})\,, \quad \mathbf{v}_{\beta} = (\mathbf{x}_{\beta}\mathbf{v}_{\beta+1}\mathbf{z}_{\beta},\mathbf{i}_{\beta})$$

it follows that $\xi(u_{\beta}) \neq u_{\beta}$ or $\xi(v_{\beta}) \neq v_{\beta}$, iff one of the following three statements hold:

1)
$$x_{\beta} = x'(t_{1},1)\cdots(t_{\nu-1},\nu-1), i_{\beta+1} = \nu > 1,$$
 $z_{\beta} = (t_{\nu+1},\nu+1)\cdots(t_{m},m)z';$
2) $i_{\beta+1} = 1, z_{\beta} = (t_{2},2)\cdots(t_{m},m)z';$

3) $z_{\beta} = z'(t_1,1)\cdots(t_m,m)z'$ and $x_{\beta}u_{\beta+1}z'$, $x_{\beta}v_{\beta+1}z'$ are reduced.

In the case 1) we have

$$\xi(u_{\beta}) = \xi(x't_{1}z',i_{\beta}) = \xi(v_{\beta})$$

which implies $\xi(u_0) = \xi(v_0)$ by 2.8.

In the case 2) we have

$$\begin{split} \xi(\mathbf{u}_{\beta}) &= \xi(\overline{\mathbf{u}}_{\beta}), \ \xi(\mathbf{v}_{\beta}) &= \xi(\overline{\mathbf{v}}_{\beta}), \\ |\overline{\mathbf{u}}_{\beta}| &< |\mathbf{u}_{\beta}|, \ |\overline{\mathbf{v}}_{\beta}| &= |\mathbf{v}_{\beta}|, \end{split}$$

where

 $\overline{u}_{\beta} = (x_{\beta}x_{\beta+1}u_{\beta+2}x_{\beta+1}x', i_{\beta}), \quad \overline{v}_{\beta} = (x_{\beta}x_{\beta+1}v_{\beta+2}x_{\beta+1}x', i_{\beta})$ and the conclusion follows by induction.

In the case 3) we have the same situation as in 2) where

$$\overline{u}_{\beta} = (x_{\beta}u_{\beta+1}z't_{1}z'', i_{\beta}), \quad \overline{v}_{\beta} = (x_{\beta}u_{\beta+1}z't_{1}z'', i_{\beta}).$$

This completes the proof of 2.11.

As a corollary from 2.8 we obtain the following proposition:

 $\underline{2.12}$. If $u, v \in \overline{Q}$ are such that $u \vdash_{\overline{1}} v$, then $\xi(u) = \xi(v)$.

To complete the proof of Lemma 2 we need the following proposition:

 $\underline{2.13}$. Let $u, v \in \overline{Q}$ and $u \vdash_{\overline{Q}} v$. If $\xi(u) \in Q$ or $\xi(v) \in Q$, then $\xi(u) = \xi(v)$.

<u>Proof:</u> From $u \, l_{\overline{2}} \, v$ it follows that there exist an $\alpha \geq 0$, u_{λ} , $v_{\lambda} \in \overline{\mathbb{Q}}$ such that

$$u = u_0, v = v_0$$

$$\mathbf{u}_{\lambda} \; = \; (\mathbf{x}_{\lambda} \mathbf{u}_{\lambda+1} \mathbf{z}_{\lambda}, \mathbf{i}_{\lambda}) \,, \qquad \mathbf{v}_{\lambda} \; = \; (\mathbf{x}_{\lambda} \mathbf{v}_{\lambda+1} \mathbf{z}_{\lambda}, \mathbf{i}_{\lambda}) \,, \quad 0 \leq \lambda < \alpha$$

$$u_{\alpha} = (x_{\alpha}yz_{\alpha}, i_{\alpha}), \quad v_{\alpha} = (x_{\alpha}(y, 1) \cdots (y, m)z_{\alpha}, i_{\alpha}).$$

By the same arguments as in the proof of 2.11 we can assume that:

a)
$$\xi(y) = y$$
, $\xi(x_{\lambda}) = x_{\lambda}$, $\xi(z_{\lambda}) = z_{\lambda}$, for every λ ;

b) x_1 is reduced for every λ .

If $\xi(y,v) \notin Q$ or $\xi(y,v) = (y,v)$ then by $\underline{2.10}$ we have $\xi(u_{\alpha}) = \xi(v_{\alpha})$, and, by $\underline{2.8}$, $\xi(u) = \xi(v)$.

Thus we can assume that $\xi(y,v) = (b_1^{m+p},v)eQ'$ and $\xi(y,v) \neq (y,v)$

Let y be reducible and let y = y'(y,1)···(ym,m)y'', where y' is reduced. Then, $x_{\alpha}y'$ is reduced, for if it were reducible, then we would have

$$x_{\alpha} = x'(t_{1},1)\cdots(t_{\gamma-1},\gamma-1), \quad y' = (t_{\gamma},\gamma)\cdots(t_{m},m)y''', \ \gamma \geq 2,$$

but this is impossible by 2.9.

Thus we have:

$$\xi(u_{\alpha}) = \xi(\overline{u}_{\alpha}), \quad \xi(v_{\alpha}) = \xi(\overline{v}_{\alpha})$$

where

 $\overline{u}_{\alpha} = (x_{\alpha}y'y_{1}y''z_{\alpha}, i_{\alpha}), \quad \overline{v}_{\alpha} = (x_{\alpha}(y'y_{1}y'', 1) \cdots (y'y_{1}y'', m)z_{\alpha}, i)$ and this implies there exist $\overline{u}, \overline{v} \in \overline{\mathbb{Q}}$ such that

$$\xi(u) = \xi(\overline{u}), \quad \xi(v) = \xi(\overline{v}), \quad |\overline{u}| < |u|, \quad |\overline{v}| < |v|, \quad \overline{u} \vdash_{\overline{2}} \overline{v}.$$

Thus, the conclusion follows by induction.

Therefore we can assume that y is reduced. Then $\xi(y,v)\in \mathbb{Q}^r$, $\xi(y,v)\neq (y,v)$ is possible only if $y=a_1^{m+p+sq}$, $s\geq 1$. If $\begin{bmatrix} a_1^{m+p+sq} \end{bmatrix}=(b_1^{m+p})$ in $(\mathbb{Q};[\])$, and if we put

$$\overline{v}_{\alpha} = (x_{\alpha}b_{1}^{m+p}z_{\alpha}, i_{\alpha})$$

$$\overline{v}_{\lambda} = (x_{\lambda}\overline{v}_{\lambda+1}z_{\lambda}, i_{\lambda})$$

we obtain that $\xi(v) = \xi(\overline{v}_0)$, and by $\underline{2.11}$ we have $\xi(u) = \xi(\overline{v}_0)$.

This completes the proof of 2.13.

Finally conclude that (i) of Lemma 2 is a corollary of 2.5 b), and (ii) is a corollary of 2.12 and 2.13.

3. We make a few more remarks.

The (m+1,m)-semigroup (P;[]), obtained in $\underline{1}$, has a universal property of this kind:

If (P';[]') is any (m+1,m)-semigroup, such that Q \subseteq P' and $\begin{bmatrix} a_1^{m+p+q} \end{bmatrix} = (b_1^{m+p})$ in (Q;[]) \iff $\iff [a_1^{m+p+q}]' = [b_1^{m+p}]'$ in (P';[]')

for all $a_v, b_v \in Q$, then there exists a unique homomorphism $\xi:(P;[]) \to (P';[]')$, such that $\xi(a)=a$ for all $a\in Q$.

It should be noted that when Theorem 1' and Theorem 2 are considered, the (m+k,m)-semigroup used there has not this universal property. Nevertheless, by slightly modified construction of $\overline{\mathbb{Q}}$, one can get an (m+k,m)-semigroup with wanted universal property. Namely, we first construct the absolutely free vector valued algebra $\overline{\mathbb{Q}}'$ of type {[]^S|s \geq 1} freely generated by \mathbb{Q} , where []^S is a symbol for an (m+sk,m)-operation for all s \geq 1. Further, we define the relations $\frac{1}{1}$, $\frac{1}{2}$, z in the same manner as in $\underline{1}$. In such a way the obtained (m+k,m)-semigroup (P';[]') is the wanted universal (m+k,m)-semigroup for the given (m+p+q, m+p)-semigroup (Q;[]). We can realize a proof of this fact almost without any changes, but we actually do not need such a proof, since the universal property of (P',[]') is clear if we have had proved Lemma 1 for k = 1.

REFERENCES

- [1] G. Čupona: Vector valued semigroups, Semigroup Forum, Vol. 26 (1983), 65-74
- [2] G. Čupona, N. Celakoski: Polyadic subsemigroups of semigroups, Alg. Confer. Skopje, 1980, 131-151
- [3] D.Dimovski: Free vector valued semigroups, This volume
- [4] E.L.Post: Polyadic groups, Trans. of the Amer. Math. Soc. (1940), 208-350
- [5] Б.Трпеновски, Ґ.Чупона: [m,n]-<u>групоиди</u>, Билтен ДМФ СРМ Скопје, 21 (1970), 19-29

Gorgi Čupona Smile Markovski Biljana Janeva

Prirodno-matematički fakultet Gazi Baba b.b. (p.f. 162) 91000 Skopje Yugoslavia