Proceedings of the Symposium n-ARY STRUCTURES, Skopje 1982

SUBALGEBRAS OF DISTRIBUTIVE SEMIGROUPS S. Kalajdžievski

An Ω -algebra $\underline{A} = (A;\Omega)$ is called an Ω -<u>subalgebra</u> of a semigroup S if $A \subseteq S$, and there is a mapping $\omega \mapsto \overline{\omega}$ from Ω in S such that:

$$\omega(a_1, \dots, a_n) = \overline{\omega} a_1 \dots a_n \tag{1}$$

for all $a_1, a_2, \ldots, a_n \in A$, $\omega \in \Omega(n)$. $(\Omega(n)$ is the set of n-ary operators belonging to Ω , i.e. Ω is a union of disjoint sets $\Omega(0), \Omega(1), \ldots, \Omega(n), \ldots$.) Denote by \varnothing the variety of $\underline{\text{distributive semigroups}}$, i.e. semigroups that satisfy the following distributive laws:

$$xyz = xyxz$$
, $xyz = xzyz$, (2)

and by $\mathcal{D}(\Omega)$ the class of Ω -subalgebras of distributive semigroups. By a more general result (see for example [1, p. 272], or [3]), for every operator domain Ω , $\mathcal{D}(\Omega)$ is a quasivariety. We show in this note that $\mathcal{D}(\Omega)$ is a variety iff $\Omega \setminus \Omega(0)$ contains at most two operators.

1. The complete system of identities in the variety 2 is described in [2]. Namely, if x_1, x_2, \ldots are variables and p, q, i_1, j_2 are positive integers, then:

$$x_{i_1}x_{i_2}...x_{i_p} = x_{j_1}x_{j_2}...x_{j_q}$$
(3)

is a nontrivial identity equation in \mathscr{Q} (i.e. in every semigroup $S \in \mathscr{D}$) iff:

$$p,q \ge 3, \ i_1 = j_1, \ i_p = j_q, \ \{i_1, \dots, i_p\} = \{j_1, \dots, j_q\}. \tag{4}$$
 ((3) is a trivial identity if p=q and $i_v = j_v$.)

Now, we can give a description of the complete system of identity equations that hold in $\mathcal{D}(\Omega)$ (i.e. in every algebra $\underline{A} \in \mathcal{O}(\Omega)$). Let ξ be an Ω -term, i.e. a term in the first order language in which the operator symbols belonging to Ω are the only non-logical symbols. Then we denote by $|\xi|$ the length of ξ , by $c(\xi)$ the set of symbols that occur in ξ , by $f(\xi)$ the first symbol of ξ and by $\ell(\xi)$ the last symbol of ξ . Then, if ξ and η are two Ω -terms the formula $\xi = \eta$ is a non-trivial identity in $\mathcal{D}(\Omega)$ iff:

 $|\xi|$, $|\eta| \ge 3$, $c(\xi) = c(\eta)$, $f(\xi) = f(\eta)$, $\ell(\xi) = \ell(\eta)$. (5) The following propositions are obvious.

1.1. $\mathcal{D}(\Omega)$ is a variety iff: A satisfies all identities of $\mathcal{D}(\Omega)$ implies that $A \in \mathcal{D}(\Omega)$.

1.2. $\mathcal{D}(\Omega)$ is a variety iff $\mathcal{D}(\Omega \setminus \Omega(0))$ is a variety.

1.3. If $\Omega' \subseteq \Omega$, then: $\mathcal{Q}(\Omega')$ is a proper quasivariety implies that $\mathcal{Q}(\Omega)$ is a proper quasivariety.

Thus, if we have an Ω -algebra \underline{A} which satisfies all identities of $\mathcal{Q}(\Omega)$ but does not satisfy a quasiidentity of $\mathcal{Q}(\Omega)$, then we can conclude, by $\underline{1.1}$, that $\mathcal{Q}(\Omega)$ is a proper quasivariety. By $\underline{1.2}$ we can assume that $\Omega(0)=\emptyset$, and finally, by $\underline{1.3}$, if $\mathcal{Q}(\rho,\tau)$ is a proper quasivariety, where $\rho,\tau\in\Omega$, then $\mathcal{Q}(\Omega)$ is a proper quasivariety as well.

 $\underline{2}$. Assume that ρ and τ are two different operators, such that ρ is m-ary and τ is n-ary.

Let us show that

$$\rho(x^{m}) = \tau(x^{n}) \implies \rho^{2}(x^{2m-1}) = \tau^{2}(x^{2n-1})$$
 (6)

is a quasiidentity in $\mathcal{Q}(\rho,\tau)$ for any $m,n\geq 1$, and that if $m,n\geq 2$, then the following quasiidentity also holds in $\mathcal{Q}(\rho,\tau)$:

$$\rho(x^{m}) = \tau(x^{n}) \implies \rho^{2}(x^{m}y^{m-1}) = \tau\rho(x^{m}y^{n-1}).$$
 (7)

Namely, let $\underline{A}=(A;\tau,\rho)$ be a $\{\tau,\rho\}$ -subalgebra of a distributive semigroup S and let $a\in A$ be such that $\rho(a^m)=\tau(a^n)$. Then

we have:

$$\begin{array}{lll} {_{\rho}}^{2}\left(a^{2m-1}\right) & = {_{\rho}}^{-2} \ a^{2m-1} & = {_{\rho}} \ a^{m} \ {_{\rho}} \ a^{m} & = {_{\rho}}\left(a^{m}\right)_{\rho}\left(a^{m}\right) & = {_{\tau}}\left(a^{n}\right)_{\tau}\left(a^{n}\right) & = \\ & = {_{\tau}} \ a^{n} \ {_{\tau}} \ a^{n} & = {_{\tau}}^{2} \ a^{2n-1} & = {_{\tau}}^{2}\left(a^{2n-1}\right), \end{array}$$

i.e. we obtain that A satisfies the quasiidentity (6).

Assume now that $m, n \ge 2$. Then, $\rho(a^m) = \tau(a^n)$ implies that:

$$\begin{array}{lll} {_{\rho}}^{2}\left(a^{m}b^{m-1}\right) & = {_{\rho}}^{2} \ a^{m}b^{m-1} & = {_{\rho}} \ a^{m}b^{n-1} & = {_{\rho}}\left(a^{m}\right)b^{n-1} & = \\ & = {_{\tau}}\left(a^{n}\right)b^{n-1} & = {_{\tau}} \ a^{n}b^{n-1} & = {_{\tau}} \ \tau\left(a^{n}\right)b^{n-1} & = \\ & = {_{\tau}} \ \rho\left(a^{m}\right)b^{n-1} & = {_{\tau}} \ \overline{\rho} \ a^{m}b^{n-1} & = {_{\tau}} \ \rho\left(a^{m}b^{n-1}\right), \end{array}$$

for any b \in A. Therefore, if m,n \geq 2, then (7) holds in \mathcal{Q} (p, τ).

Let n=1, and let $\underline{A} = (\{a,b,c\};\rho,\tau)$ be a $\{\rho,\tau\}$ -algebra such that $a\neq b\neq c\neq a$, and:

$$\rho(x_1,...,x_m) = b$$
, for any $x_1,...,x_m \in \{a,b,c\}$, $\tau(a) = b$, $\tau(b) = \tau(c) = c$.

The algebra \underline{A} does not satisfy (6), for $\rho(x^m) = \tau(x)$ implies x=a, but then:

$$\rho^{2}(a^{2m-1}) = b \neq c = \tau^{2}(a)$$
.

Let ξ and η be two $\{\rho,\tau\}$ -terms such that (5) holds. If the first symbol of ξ and η is ρ , then any value of ξ and η is b. If $f(\xi) = f(\eta) = \tau$ and if the symbol ρ occurs in ξ and η , then any value of ξ and η is c. And, finally if $\xi = \tau^i x$, $\eta = \tau^j x$, $i,j \geq 2$, then also any value of ξ and η is c. Therefore the algebra A satisfies all the identities of $\mathcal{N}(\rho,\tau)$, but it does not belong to $\mathcal{N}(\rho,\tau)$, for it does not satisfy the quasiidentity (6).

It remains the case when $m \ge 2$, $n \ge 2$. Now we consider the following algebra $\underline{A} = (\{a,b,c\}; \rho, \tau)$, where $a \ne b \ne c \ne a$, and:

$$\rho(c^{m}) = \tau(c^{n}) = c,$$

$$\rho(x_{1},...,x_{m}) = a, \quad \tau(x_{1},...,x_{n}) = b,$$

if $x, \neq c$ for some i.

The obtained algebra \underline{A} does not satisfy the quasiidentity (7), for we have $\rho(c^m)=c=\tau(c^n)$, but $\rho^2(c^mb^{m-1})=a\neq b=\tau_\rho(c^mb^{n-1})$. Therefore $\underline{A}\notin \mathscr{O}(\rho,\tau)$ but it can be easily seen that \underline{A} satisfy all the identities of $\mathscr{O}(\rho,\tau)$. Namely, let $\xi(x_1,x_2,\ldots,x_p)$, $\eta(x_1,x_2,\ldots,x_p)$ be two $\{\rho,\tau\}$ -terms such that (5) holds. Then we have: $\xi(c^p)=c=\eta(c^p)$. And, if $(c^p)\neq(x_1,\ldots,x_p)$, then $f(\xi)=f(\eta)=\rho$ $\Rightarrow \xi(x_1,\ldots,x_p)=a=\eta(x_1,\ldots,x_p)$, $f(\xi)=f(\eta)=\tau \Rightarrow \xi(x_1,\ldots,x_p)=b=\eta(x_1,\ldots,x_p)$. From this example it follows that $\mathscr{O}(\rho,\tau)$ is a proper quasivariety.

Thus, we have shown that if $\Omega \setminus \Omega(0)$ contains at least two operators, then $\mathcal{O}(\Omega)$ is a proper quasivariety.

 $\underline{3}$. It remains the case when Ω consists of only one n-ary operator ω , where $n \geq 1$. In this case $\sqrt[3]{\Omega} = \sqrt[3]{\omega}$ is a variety.

Let $\underline{A}=(A;\omega)$ satisfy all the identities of $\mathcal{A}(\omega)$, and let e be a symbol which does not belong to A. Consider the semigroup D which is freely generated by $B=A\cup\{e\}$ in the variety \mathcal{A} . Thus, D consists of all "formal products" $b_1b_2\ldots b_p$ of elements of B, and

$$b_1 b_2 ... b_p = b_1 b_2 ... b_q$$

in D iff

q=p, $b_y=b_y'$ or $p,q \ge 3$, $b_1=b_1'$, $b_p=b_q'$ and

$$\{b_1, \ldots, b_p\} = \{b_1, \ldots, b_q\}.$$

If $u=\dots a\dots \in D$, a A, $a=\omega(a_1,\dots,a_n)$ in A, and $v=\dots ea_1\dots a_n\dots$, then we say that (u,v) and (v,u) are two pairs of neighbours. Two elements $u,v\in D$ are said to be $\underline{equivalent}$, and this is denoted by $u\approx v$, iff there is a sequence $u_0,\dots,u_t\in D$ such that $t\geq 0$, $u_0=u$, $u_t=v$, and (u_{i-1},u_i) is a pair of neighbours if $i\geq 1$. It is clear that z is a congruence on D.

We will show that the following statement is satisfied:

$$a,b \in A \implies (a \approx b \implies a = b)$$
 (*)

and this will implies that \underline{A} can be embedded as an Ω -subalgebra in the semigroup $S = D/_{\mathscr{C}}$.

Consider first the case $n \ge 2$. An element $u \in D$ will be called an \underline{w} -word if $u \in A$, or $u = e \ b_1 b_2 \dots b_p a$, where $b_v \in B$, $p \ge 1$, $a \in A$. The "value" [u] of an w-word is defined in the following way. First, if $u \in A$, then [u] = u. And, if $u = eb_1 \dots b_p a$, then $u = e^i b_1 b_2 \dots b_p a^j$ for any $i \ge 1$, $j \ge 1$, and we can choose i,j in such a way that the term ξ , which is obtained from u by replacing any occuring of e by w is a "continued product" in (A, w); then, [u] is the "value" of this "product". The fact that (A, w) satisfies all the identities of D(w) implies that the value [u] of an w-word is uniquelly determined.

Let a,b \in A and a \approx b. Then, there exist $u_0, u_1, \ldots, u_t \in D$ such that $a=u_0$, $b=u_t$, $t\geqslant 0$ and (u_{i-1},u_i) is a pair of neighbours for any $i\in\{1,\ldots,t\}$. If u_i is an ω -word for any i, then $[u_{i-1}]=[u_i]$, and $a=[a]=[u_1]=\ldots=[u_{t-1}]=[b]=b$.

Assume now that u_i is an ω -word if $i \in \{0, \ldots, p\}$, u_j is not an ω -word if $i \in \{p+1, \ldots, p+q-1\}$, and u_{p+q} is an ω -word. Put $u'_{p+\psi} = eu_{p+\psi}$, if $\psi \in \{1, \ldots, q-1\}$. Then we have that $(u_p, u_{p+1}), \ldots, (u_{p+q-1}, u_{p+q})$ are pairs of neighbours and thus we have $[u_p] = [u'_{p+1}] = \ldots = [u'_{p+q-1}] = [u_{p+q}]$, and therefore we consider the sequence $a = u_0, \ldots, u_p, u'_{p+1}, \ldots, u'_{p+q-1}, u'_{p+q}$, instead of $u_0, \ldots, u_p, u'_{p+1}, \ldots, u'_{p+q-1}, u'_{p+q}$. This shows that it can be assumed that all the members of the sequence u_0, u_1, \ldots, u_t are ω -words which implies that a = b.

It remains the case n=1. Let $a=u_0,u_1,\ldots,u_t=b$, be as above. If t=0, then a=b, and if t ≥1, then t ≥2. Let t=2. Then $u_1=ec$, where $c\in A$, and $a=\omega(c)=b$. Let $n\ge 3$ and $u_2\ne a$; by a standard induction it can be shown that if $c\in A$ and $u_j=\ldots c$, then $a=\omega^2(c)=b$.

This completes the proof of (*).

 $\underline{4}$. From $\underline{1}$, $\underline{2}$, and $\underline{3}$ we obtain the following main result of this note:

Theorem. \mathcal{A} (Ω) is a variety of Ω -algebras iff $\Omega \setminus \Omega(0)$ contains at most one operator.

REFERENCES

- [1] Мальцев А.И.: Алгебраические системы; Москва 1970
- [2] Марковски С.: <u>За дистрибутивните</u> полугрупи, Год. збор. Матем. фак. Скопје, 30 (1979)
- [3] Markovski S.: On quasivarieties of generalized subalgebras, Algebraic Conference, Skopje 1980, 125-129

Faculty of Mathematics, Skopje, P.O.Box 504, Yugoslavia