n-SUBGROUPOIDS OF CANCELLATIVE GROUPOIDS

S. Markovski

The classes of n(t)-subgroupoids of cancellative groupoids are considered in this paper, where t is a groupoid term of some special form. It is known that these classes are quasivarieties ([2], [3] p. 274). We give here a description of the axiom sets of that quasivarieties.

1. n-subgroupoids of groupoids. Let $X = \{x_1, x_2, \ldots, x_n, \ldots\}$ be a set of variables, and let * be a binary operation symbol. Define the notion of a *-term (or, briefly, of a term) in the following inductive way:

- (i) every variable is a term,
- (ii) if t_1 , t_2 are terms, then the string * t_1t_2 is a term,
- (iii) a string of elements of the set $X \cup \{*\}$ is a term iff it is obtained by a finite application of (i) and (ii).

Define a *subterm* of a term t by this inductive way: t is a subterm of itself, and if t = t't'', then t', t'' and any subterm of t', t'' are subterms of t too. By $t = t_1(\ldots, t_2, \ldots)$ we denote that the term t_2 is a subterm of t.

If t is a term, then $t(y_1, y_2, ..., y_k)$ denotes that $\{y_1, y_2, ..., y_k\}$ is the set of variables which appear in t.

Let A be a set and let $t(y_1, \ldots, y_k)$ be a *-term. If every appearence of a variable y_i is changed by an element $a_i \in A$, then we get a string $t(a_1, \ldots, a_k)$ of elements of the set $A \cup \{*\}$, called a *-word (or a word) over the set A. We say that the word $t(a_1, \ldots, a_n)$ has the form of the term $t(y_1, \ldots, y_k)$. We define a subword of a word in the same way as we have defined a subterm of a term. Denote by W(A) the set of all *-words over the set A. Clearly, $A \subseteq W(A)$.

Define an operation \cdot on the set W(A) by

$$(\forall u, v \in W(A)) \quad u \cdot v = *uv.$$

In this way $F_A = (W(A), \cdot)$ becomes a grupoid, which is isomorphic to the free groupoid generated by the set A.

For any groupoid G = (G, o) and any *-word $u = t(a_1, \ldots, a_k)$ we define $u_G = t_G(a_1, \ldots, a_k)$ to be that element of G which is obtained from u by replacing any operation symbol * by the operation o of G.

A universal algebra A = (A, f) with one n-ary operation $f (n \ge 1)$

is said to be an n-groupoid.

Consider an *n*-grupoid (A, f) and let $t = t(x_1, \ldots, x_n)$ be a *-term which is not a variable. The *n*-groupoid (A, f) is said to be an n(t)-subgroupoid of a groupoid (G, o) iff $A \subseteq G$ and for all $a_1, \ldots, a_n \in A$

(1.1)
$$f(a_1,\ldots,a_n)=t_G(a_1,\ldots,a_n).$$

The *-term t is called a representation of the n-ary operation f. If the representation t of f is given, instead of n(t)-subgroupoid we will say simply n-subgroupoid.

Suppose that t is a given representation of the operation f of the n-groupoid (A, f). Let $P = \{u \in W(A) \mid u \text{ has not a subword of the form } t(a_1, \ldots, a_n), \text{ where } a_1, \ldots, a_n \in A\}$. Define an operation \bullet on P by

$$u, v \in P, \quad *uv \in P \Rightarrow u \bullet v = *uv,$$

 $u, v \in P, \quad *uv = t (a_1, \dots, a_n) \Rightarrow u \bullet v = f(a_1, \dots, a_n).$

Since t contains exactly n distinct variables, (P, \bullet) is a groupoid. As t is not a variable, we have that $A \subseteq P$, and (1.1) is satisfied by the definition of (P, \bullet) . We say that (P, \bullet) is the (universal) t-covering groupoid of the n-groupoid (A, f), and denote it by $A^{\wedge} = (A^{\wedge}, \bullet)$.

Thus, we have proved

Theorem 1.1. Every n-groupoid is an n-subgroupoid of its universal t-covering groupoid.

Notice the following property of the t-covering groupoid A^:

(1.2)
$$u_1 \bullet v_1 = u_2 \bullet v_2 \Rightarrow (u_1 = u_2, v_1 = v_2 \text{ in } \mathbf{F}_A) \text{ or}$$

$$(u_1 \bullet v_1 = f(a_1, \dots, a_n), u_2 \bullet v_2 =$$

$$= f(b_1, \dots, b_n) \text{ and } f(a_1, \dots, a_n) =$$

$$= f(b_1, \dots, b_n), \text{ where } a_v, b_v \in A).$$

(1.3)
$$u \bullet v \in A \Leftrightarrow *uv = t (a_1, \ldots, a_n), \text{ where } a_v \in A.$$

2. n-subgroupoids of cancellative groupoids. An n-groupoid (A, f) is said to be i-cancellative iff

$$f(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n)=f(a_1,\ldots,a_{i-1},c,a_{i+1},\ldots,a_n)\Rightarrow b=c$$

for any a_i , b, $c \in A$. An n-groupoid (A, f) is cancellative (left cancellative, right cancellative) iff it is i-cancellative for all i = 1, 2, ..., n (n-cancellative, 1-cancellative).

Let the representation t of the n-ary operation f have the form $t=*t_1t_2$. Denote by $V(t_1)$ ($V(t_2)$) the set of variables which appear in the subterm $t_1(t_2)$. We have the following

Theorem 2.1. (i) If $V(t_1) \subseteq V(t_2)$, then every n-groupoid is an n-subgroupoid of a right cancellative groupoid.

- (ii) If $V(t_2) \subseteq V(t_1)$, then every n-groupoid is an n-subgroupoid of a left cancellative groupoid.
- (iii) If $V(t_1) = V(t_2)$, then every n-groupoid is an n-subgroupoid of a cancellative groupoid.

Proof: (i) By Theorem 1.1 it is enough to be shown that the *t*-covering groupoid A° of any *n*-groupoid (A, f) is right cancellative, when $V(t_1) \subset V(t_2)$.

Let $u, v, w \in A^{\wedge}$, and $v \cdot u = w \cdot u$.

If $v \bullet u = *vu$, then $w \bullet u = *wu$, and (1.2) implies that v = w.

If $v \cdot u \neq *vu$, then by (1.3) we have that $w \cdot u \neq *wu$ and $v \cdot u = f(a_1, \ldots, a_n) = f(b_1, \ldots, b_n) = w \cdot u$, where $*vu = t(a_1, \ldots, a_n)$, $*wu = t(b_1, \ldots, b_n)$ for some a_v , $b_v \in A^{\wedge}$. In fact, as $V(t_1) \subseteq V(t_2)$, we can suppose that $t(x_1, \ldots, x_n) = *t_1(x_1, \ldots, x_t) t_2(x_1, \ldots, x_n)$, i. e.

$$v = t_1 (a_1, \dots, a_i), \quad w = t_1 (b_1, \dots, b_i),$$

 $u = t_2 (a_1, \dots, a_n) = t_2 (b_1, \dots, b_n).$

We have from the last equality that $a_1 = b_1, \ldots, a_n = b_n$, which implies that v = w.

- (ii) In the same manner as in (i) we can prove that $V(t_2) \subseteq V(t_1)$ implies that the t-covering groupoid of any n-groupoid is left cancellative.
 - (iii) is a consequence of (i) and (ii).

3. n(t)-subgroupoids of cancellative groupoids, when t is a balanced term. A term is said to be balanced if a variable appears in it at most ones. Here we will consider only such representations $t(x_1, ..., x_n)$ of n-ary operations which are balanced and the order of the appearences of the variables in the term t is natural (i.e. x_{i+1} follows x_i , for all i).

A subterm t_2 of a term t is said to be terminal iff either $t = *t_1t_2$ or $t = *t_1t_3$ and t_2 is terminal in t_3 .

Further on we will use shorter notations of the strings of variables of elements of a given set in this way: y_j^k will denote the string of variables $y_j, y_{j+1}, \ldots, y_k$ $(j \le k), a_m^n$ will denote the string a_m, \ldots, a_n $(m \le n)$ of elements of a set $A, f(a_1^n)$ will denote $f(a_1, \ldots, a_n)$ and so on.

Theorem 3.1. If an n-groupoid is an n-subgroupoid of a (left, right) cancellative groupoid, then it is a (left, right) cancellative n-groupoid.

Proof: Suppose that (A, f) is an *n*-groupoid, which is an n(t)-subgroupoid of a left cancellative groupoid (G, o), where t is a given balanced term. Then we have (for any a_v , b_v , $c_v \in A$):

$$f(a_1^{n-1}, b) = f(a_1^{n-1}, c) \Rightarrow t_G(a_1^{n-1}, b) = t_G(a_1^{n-1}, c) \Rightarrow t_{1G}(a_1^m) \circ t_{2G}(a_{m+1}^{n-1}, b) = t_{1G}(a_1^m) \circ t_{2G}(a_{m+1}^{n-1}, c) \Rightarrow t_{2G}(a_{m+1}^{n-1}, b) = t_{2G}(a_{m+1}^{n-1}, c) \Rightarrow \cdots \Rightarrow b = c,$$

where $t(x_1^n) = *t_1(x_1^m) t_2(x_{m+1}^n), \dots$

Theorem 3.2. A left cancellative n-groupoid (A, f) is an n-subgroupoid of a left cancellative groupoid iff the following conditions are satisfied:

(i) For any terminal subterm $t_1(x_{k+1}^n)$ of the representation $t(x_1^n)$ of f, the quasiidentity

(3.1)
$$f(x_1^k, y_{k+1}^n) = f(x_1^k, z_{k+1}^n) \Rightarrow f(x_1^k, y_{k+1}^n) = f(x_1^k, z_{k+1}^n)$$

is true in (A, f).

(ii) If t_1 is a terminal subterm of t and if $t(x_1^n)=t_2(x_1^l, t_1(x_{i+1}^k), x_{k+1}^{n-k+i}, t_1(x_{n-k+i+1}^n))$, then the quasiidentity

3.2)
$$f(x_1^{n-k+i}, y_{n-k+i+1}^n) = f(x_1^{n-k+i}, z_{n-k+i+1}^n) \Rightarrow \\ \Rightarrow f(x_1^{i}, y_{n-k+i+1}^n, x_{i+1}^{i-k+i}) = f(x_1^{i}, z_{n-k+i+1}^n, x_{i+1}^{i-k+i})$$

is true in (A, f). (Here, x_y , x_y' , y_y , z_y are variables.)

Proof: It is easy to be shown that the quasiidentities (3.1) and (3.2) are true in an *n*-groupoid (A, f), which is an *n*-subgroupoid of a left cancellative groupoid (G, o). For instance, let the hypothesis of (3.2) is satisfied in (A, j). Then, it follows from (1.1) that

$$t_{2G}\left(a_{1}^{n-k+i},\ t_{1G}\left(b_{1}^{k-i}\right)\right)=t_{2G}\left(a_{1}^{n-k+i},\ t_{1G}\left(c_{1}^{k-i}\right)\right)$$

for any a_{ν} , b_{ν} , $c_{\nu} \in A$, which give rise to

$$(3.3) t_{1G}(b_1^{k-i}) = t_{1G}(c_1^{k-i}),$$

because we can cancel on the left-hand side. Now, by multiplying on the left-hand side and on the right-hand side, it follows from (3.3) that

$$t_{2G}(d_1^i,\ \iota_{1G}(b_1^{k-i}),\ d_{i+1}^{n-k+i}) = t_{2G}(d_1^i,\ t_{1G}(c_1^{k-i}),\ d_{i+1}^{n-k+i})$$

for any $d_y \in A$, i.e. we can conclude that (3.2) holds true in (A, f).

We suppose now that the conditions (i) and (ii) are satisfied.

Define a congruence on the t-covering groupoid A^{\wedge} of the n-groupoid (A, f) as follows.

If $t_1(x_n^n)$ is a terminal subword of t, then we put

$$(3.4) t_1(a_p^n) \propto_0 t_1(b_p^n) \Leftrightarrow (\exists c_1, \ldots, c_{p-1}) f(c_1^{p-1}, b_p^n) = f(c_1^{p-1}, a_p^n)$$

where a_{ν} , b_{ν} , $c_{\nu} \in A$.

As a consequence of (3.1) we get that the existential quantifier in (3.4) can be replaced by the universal one. This implies that the relation α_0 on A^{\wedge} is transitive and symmetric.

Define a relation a on A^ by

$$u \propto v \Leftrightarrow u = t'(a_1^i, t''(b_1^p), d_1^i), v = t'(a_1^i, t''(c_1^p), d_1^i), t''(b_1^p) \propto_0 t''(c_1^p)$$

where α_{v} , b_{v} , c_{v} , $d_{v} \in A$ and t'' is a terminal subterm of t.

Finally, we put

$$u \beta v \Leftrightarrow (\exists u_1, \ldots, u_r, r \geqslant 0) \quad u \alpha u_1 \alpha u_2 \alpha \ldots \alpha u_r \alpha v.$$

Since the relation α is reflexive and symmetric, β is an equivalence. Let $u, v, w \in A^{\wedge}$, $u \propto v$. If $u \cdot w = *uw$, then $v \cdot w = *vw$ and it is clear that $u \cdot w \propto v \cdot w$. Suppose that $u \cdot w \in A$. It follows by (1.3) that for some $a_1, \ldots, a_n \in A$, $*uw = t (a_1^n)$, where

$$\begin{split} &t\left(x_{1}^{n}\right)=\ast\,t_{1}\,\left(x_{1}^{i},\,t_{3}\left(x_{i+1}^{i+p}\right),\,x_{i+p+1}^{k}\right)\,\,t_{2}\left(x_{k+1}^{n-p},\,\,t_{3}\left(x_{n-p+1}^{n}\right)\right),\\ &u=t_{1}\,\left(a_{1}^{i},\,t_{3}\left(a_{i+1}^{i+p}\right),\,\,a_{i+p+1}^{k}\right),\,\,v=t_{1}\left(a_{1}^{i},\,\,t_{3}\left(b_{i+1}^{i+p}\right),\,\,a_{i+p+1}^{k}\right),\\ &w=t_{2}\left(a_{k+1}^{n-p},\,t_{3}\left(a_{n-p+1}^{n}\right)\right)\end{split}$$

where $b_v \in A$ and

3.5)
$$t_3(a_{i+1}^{i+p}) \alpha_0 t_3(b_{i+1}^{i+p}).$$

Now, (3.5) implies that for some $c_y \in A$

$$f(c_1^{n-p}, a_{i+1}^{i+p}) = f(c_1^{n-p}, b_{i+1}^{i+p}),$$

and from (3.2) we get

$$u \bullet w = f(a_1^n) = f(a_1^i, b_{i+1}^{i+p}, a_{i+n+1}^n) = v \bullet w$$

In the same way as above one can prove that $u, v, w \in A^{\wedge} \Rightarrow (u \propto v \Rightarrow w \cdot u \propto w \cdot v)$, i.e. that β is a congruence on A^{\wedge} .

Now, to complete the proof, we have to show that (A, f) is an *n*-subgroupoid of $A^{/\beta}$ and that $A^{/\beta}$ is a left cancellative groupoid.

4 Годишен зборник

Let $a \in A$, $u \in A^{\circ}$ and $a \propto u$. Then a and u have a form of a variable, i.e. $u \in A$, which means that $a \propto_0 u$. So, for any $c \in A$, $f(c_1^{n-1}, a) = f(c_1^{n-1}, u)$, and this implies a = u. It follows that if $a, b \in A$ and $a \not\ni b$, then a = b, and we can assume that $A \subseteq A^{\circ}/\beta$.

Finally, let $u, v, w \in A^{\wedge}$ and $u \bullet v \beta u \bullet w$. If $u \bullet v \in A$, then $u \bullet w \in A$, and $u = t_1(a_1^i)$, $v = t_2(a_{i+1}^n)$, $w = t_2(b_{i+1}^n)$, $f(a_1^n) = f(a_1^i, b_{i+1}^n)$ where $t = *t_1 t_2$, a_v , $b_v \in A$. Now from the definition of α_0 we have that $v \alpha_0 w$, i.e. $v \beta w$.

Suppose that $u \cdot v$ and $u \cdot w$ are not in A. Then there exists a sequence

$$*uv = *u_1 v_1 \alpha *u_2 v_2 \alpha \cdot \cdot \cdot \alpha *u_{k-1} v_{k-1} \alpha *u_k v_k = *uw$$

where *uv, $*u_2v_2, \ldots, *u_{k-1}v_{k-1}$, *uw have a form of a term $t' = *t_1 t_2$. Let t' be not a terminal subterm of t. Then $*u_i v_i \alpha *u_{i+1} v_{i+1}$ implies $u_i \alpha u_{i+1}, v_i \alpha v_{i+1}$ ($i = 1, 2, \ldots, k$), i.e $v \beta w$. If t' is a terminal subterm of t, then we will use the following property:

$$*u_i v_i \alpha *u_{i+1} v_{i+1} \Rightarrow *u_i v_i \alpha_0 *u_{i+1} v_{i+1}$$

which is an easy consequence from the definitions of α_0 and α and (3.2). In such a way the transtivity of α_0 implies $*uv \alpha_0 *uw$, and since v and w have a form of a terminal subterm of t, we get $v \alpha_0 w$, i.e. $v \beta w$.

We can formulate and prove Theorem 3.2' for right cancellative n-groupoids in an easy way by exchanging the definition of a terminal subword by an intitial subword, left by right, and reformulating the conditions (i) and (ii) in Theorem 3.2.

When cancellative n-groupoids are regarded, one can prove in the same manner as above the following

Theorem 3.3. A cancellative x-groupoid (A, f) is an n-subgroupoid of a cancellative groupoid iff for any representation of t in the forms

$$t(x_1^n) = t_1(x_1^k, t_4(x_{k+1}^{k+s}), x_{k+s+1}^n) = t_2(x_1^r, t_4(x_{r+1}^{r+s}), x_{r+s+1}^n)$$
$$= t_3(x_1^m, t_4(x_{m+1}^{m+s}), x_{m+s+1}^n),$$

the following quasiidentities are satisfied in (A, f):

$$f(x_1^{\prime k}, x_1^s, x_{k+1}^{\prime n-s}) = f(x_1^{\prime k}, y_1^s, x_{k+1}^{\prime n-s}) & f(x_1^{\prime \prime r}, y_1^s, x_{r+1}^{\prime \prime n-s}) = f(x_1^{\prime \prime r}, z_1^s, x_{r+1}^{\prime \prime n-s})$$

$$\Rightarrow f(x_1^{\prime \prime \prime m}, x_1^s, x_{m+1}^{\prime \prime \prime n-s}) = f(x_1^{\prime \prime \prime m}, z_1^s, x_{m+1}^{\prime \prime \prime n-s}). \blacksquare$$

4. Remarks. 1. We should note that the above results are generalizations of some of the results given in [1], and that further generalizations are possible. For example, let the representation of a ternary operation f be given by $t = **x_1x_2*x_1x_3$. Then one can prove that a ternary groupoid

- (A, f) is a 3-subgroupoid of a cancellative groupoid iff it is left cancellative and 2-cancellative.
- 2. If the representation of the unary operation f of the 1-groupoid (A,f) is a variable, then (A,f) is an 1-subgroupoid of a groupoid (G, o) iff $A \subseteq G$.
- 3. If the representation t of the n-ary operation f contains k variables, k < n, then an n-groupoid (S, f) is an n-subgroupoid of a groupoid only if f depends actually on k variables.
- 4. It could be obtained results similar to that given in 3 by using balanced terms as representations of the *n*-ary operations in which the variables do not appear in the natural order. In that case slightly different reformulations of Theorems 3.2, 3.2', 3.3 should be made.

REFERENCES

- [1] Čupona, G.: On n-groupoids, Mat. Bilt. 2 (28), 1978, Skopje
- [2] Markovski, S.: On quasivarieties of generalized subalgebras, Alg. Confer., Skopje, 1980
- [3] Мальцев, А. И.: Алгебраические Системы, "Наука", Москва 1970.

п-ПОДГРУПОИДИ ОД ГРУПОИДИ СО КРАТЕЊЕ

С. Марковски

Резиме

Во работава се разгледуваат обопштувања на дел од резултатите дадени во [1]. Имено, се разгледуваат n(t)-подгрупоидите од групоидите со кратење, каде t е групоиден терм од некој специјален облик. Познато е дека класата од n(t)-подгрупоидите на групоидите со кратење e квазимногукратност ([2], [3]), а овде се дава опис на таа квазимногукратност.