Algebraic conference S k o p j e 1980

BI-IDEAL SEMIGROUPS

B. Trpenovski

We call a semigroup S a bi-ideal semigroup iff all subsemigroups of S are bi-ideals in S, i.e. $B \subseteq S$, $B^2 \subseteq B \implies BSB \subseteq B$. Bi-ideal semigroups were introduced in $\begin{bmatrix} 6 \end{bmatrix}$ in an analogous way as the left-ideal semigroups were introduced and studied in $\begin{bmatrix} 3 \end{bmatrix}$ and $\begin{bmatrix} 7 \end{bmatrix}$. It seems, however, that the way the structure of left-ideal semigroups is described in $\begin{bmatrix} 3 \end{bmatrix}$ and $\begin{bmatrix} 7 \end{bmatrix}$ is not appropriate in the case of bi-ideal semigroups. So, we explore here the idea from $\begin{bmatrix} 2 \end{bmatrix}$ to give a structural description for bi-ideal semigroups. First, let us quote some of the results from $\begin{bmatrix} 6 \end{bmatrix}$:

Theorem 1. Let S be a bi-ideal semigroup. Then the following hold:

- (i) (\forall a \in S) aSa \subseteq <a>, where <a> is the cyclic subsemigroup of S generated by a;
 - (ii) S is periodic and $|\langle a \rangle| \le 5$ for all $a \in S$;
- (iii) The set E of all the idempotents of S is a
 rectangular band;
 - (iv) $(\forall e \in E) (\forall x \in S)$ xe, ex $\in E$.

In what follows we suppose S to be a bi-deal semigroup.

Let us put $P = S \setminus E$, where E is as in Theorem 1. We shall establish some properties about P and S.

a) It is easily seen that P is a partial semigroup, i.e. $(\forall x,y,z\in P)$ if one of the elements (xy)z and x(yz) belongs to P, then (xy)z, $x(yz)\in P$ and (xy)z=x(yz).

From Theorem 1 it follows that

b) $(\forall x \in P) (\exists m \in N)$, where N is the set of positive integers, such that $x^m \notin P$. (In fact, $(\forall x \in P)$ $x^5 \notin P$). Because of this property we may call P a periodic partial semigroup.

A subset R of a partial semigroup Q is said to be a partial subsemigroup of Q iff $[x,y \in R]$ and $xy \in Q$, then $xy \in R$. A partial subsemigroup R of a partial semigroup Q is said to be a bi-ideal in Q iff $x,y \in R$, $xqy \in Q$, $q \in Q$, implies $xqy \in R$. If all partial subsemigroups of a partial semigroup Q are bi-ideals in Q, then we call Q a partial bi-ideal semigroup. We can show, now,

c) P is a partial bi-ideal semigroup.

Really, if B is a partial subsemigroup of P, x,y \in B and xpy \in P, p \in P, then B* = in S is a bi-ideal in S and therefore xpy \in B*. But, from B*\B \subseteq E and P \cap E = \emptyset it follows that xpy \in B.

Let e_x be the idempotent in $\langle x \rangle$ and let us put $\phi(x) = e_x$. Then,

d) $\phi:P \to E$ is a homomorphism.

If xy=z, $x,y,z \in P$, then $zx=xyx \in \langle x \rangle$ in S, i.e. $zx=x^k$, $k \in \{1,2,3,4,5\}$. Let $x^m=e_x$. From $zx=x^k$ it fol-

lows that $zx^m = x^{m+k-1}$, i.e. $ze_x = e_x$, since $x^{m+k-1} = e_x x^{k-1}$ is a idempotent (th. 1 (iv)) which belongs to <x>. Now, $z^2e_x = ze_x = e_x$, $z^3e_x = e_x$ and so on, so that $e_z = e_x$. Similarly we have $e_y = e_x = e_x$ and then $e_x = e_x = e_x = e_x$ so that $e_x = e_x = e_x = e_x$ which means that $e_x = e_x = e_x = e_x = e_x$.

Let $x,y\in S$ and $xy\in E$. Then in a similar way, as above we can prove that $ee_x=e_x$ and $e_y=e=e_y$ where e=xy. Now, $xy=e=ee_xe_y=e_y=\phi(x)\phi(y)$:

e) $x, y \in S$, $xy \in E \implies xy = \phi(x)\phi(y)$.

If we put $\phi(e)=e$ for all $e\in E$, then from the definition of ϕ and e) it follows that we can extend $\phi:S\to E$ to be an epimorphism.

Conversely, assume that P is a periodic partial bi-ideal semigroup, E a rectangular band, P \cap E = \emptyset and $\phi:P \rightarrow E$ a homomorphism. By putting $\phi(e)=e$ for all $e \in E$, we can consider ϕ as a mapping from $S = P \cup E$ onto E such that $\phi_{\parallel}P$ is a homomorphism. We define an operation in S by

xy as in P if $x,y \in P$ and xy is defined in P, $xy = \{ \phi(x) \phi(y) \text{ otherwise.} \}$

Let us show that S is a semigroup. Let $x,y,z \in S$. We consider the following three cases:

- (i) If one of (xy)z and x(yz) belongs to P, then as P is a partial semigroup, we have that (xy)z, $x(yz) \in P$ and (xy)z = x(yz).
- (ii) If both, xy and yz are not defined in P, then (x,y)z, $x(yz) \in E$ and by the definition of the opperation in S and the associativity in E we have that

$$(xy) z = \left[\phi(x)\phi(y)\right]\phi(z) = \phi(x)\left[\phi(y)\phi(z)\right] = x(yz).$$

(iii) Finally, if at least one of xy,yz (for instance xy) is defined in P but neither of (xy)z and x(yz) is defined in P, then

 $(xy) z = \phi(xy) \phi(z) = (\phi-\text{homomorphism}) =$ $= \left[\phi(x) \phi(y)\right] \phi(z) = (\text{associativity in E}) =$ $= \phi(x) \left[\phi(y) \phi(z)\right] = (\text{definition of } \phi,$ or $\phi-\text{homomorphism}) = \phi(x) \phi(yz) = x(yz).$

Denote the semigroup just constructed by $S=(P,E,\phi)$. We shall prove, now, that $S=(P,E,\phi)$ is a bi-ideal semigroup.

Let B be a subsemigroup of S, $x,y \in B$ and $s \in S$. It is clear that $B^*=B\setminus E$ is a partial subsemigroup of P. So, if $xsy \in P$, then $xsy \in B^* \subseteq B$ since P is a partial bi-ideal semigroup. Let xsy is not defined in P. If $xy \in B^*$, then xy is not defined in P and

 $xsy=\phi(x)\phi(s)\phi(y)=(E \text{ is a rectangular band})=$ = $\phi(x)\phi(y)=xy\in B.$

Finally, if $xy \in P$, then $xy \in B^*$ and, because of the periodicity of P, $(xy)^k \in E$ for some $k \in N$. Let $(xy)^k = E$ we have that $e \in B \setminus B^*$ and, since ϕ is a homomorphism, $\phi(x) \phi(y) = \phi(xy) \in E$. Now,

$$\phi (xy) = [\phi (xy)]^{k} = \phi [(xy)^{k}] = e.$$

So, again we have that

$$xsy = \phi(x) \phi(y) = \phi(xy) = e \in B$$
,

which proves that B is a bi-ideal of S.

In summary, we have proved the following

Theorem 2. A semigroup S is a bi-ideal semigroup iff

 $S=(P,E,\phi)$ where P is a periodic partial bi-ideal semigroup, E a rectangular band, $P \cap E=\emptyset$ and $\phi:P \to E$ a homomorphism.

At the end, using Theorem 2, let us quote some examples of bi-ideal semigroups.

Examples

- 1) Every rectangular band is a bi-ideal semigroup.
- 2) Let A be a nonempty set, E-rectatgular band and $\phi:A\to E$ any mapping. Then S=A \cup E is a bi-ideal semigroup with an operation defined as follows:

$$xy = \begin{cases} \phi(x)\phi(y) & \text{if } x,y \in A \\ xy & \text{if } x,y \in E \end{cases}$$

$$\phi(x)y & \text{if } x \in A,y \in E \\ x\phi(y) & \text{if } x \in E,y \in A.$$

3) Let E be a rectangular band and B_k a partial semigroup defined as follows: (i) $x,y\in B_k$, $x\neq y\Longrightarrow xy$ is not defined in B_k ; (ii) $x\in B_k\Longrightarrow x^2\in B_k$ (k=2), $x^2,x^3\in B_k$ (k=3), $x^2,x^3,x^4\in B_k$ (k=4). Further, let $\phi:B_k\to E$ be a mapping such that, if $x^k\in B_k$, then $\phi(x^k)=\phi(x)$. Let us extend ϕ to a mapping from $S=B_k\cup E$ onto E by ϕ (e)=e for all $e\in E$ If we define an operation in S by $xy=\phi(x)\phi(y)$, then S will be a bi-ideal semigroup.

REFERENCES

- [1] Cliford A.H. and Preston G.B., The algebraic theory of semigroups, v.1, 1961, Providence
- [2] Čupona G., Semigroups in which some left ideal is a group, God.zbor., PMF, A, T.14 (1963), 15-17
- [3] Kimura Naoki, Tamura Takayki, Merkel Rudoplh, Semigroups in which all subsemigroups are left ideals, Can.J.Math., XVII (1965), 52-62

- [4] Ляпин Е.С., Полугрупп , 1960, Москва
- [5] Petrich Mario, Introduction to semigroups, Columbus, Ohio, 1973
- [6] Трпеновски Б.Л., За една класа полугрупи, Год.Збор. Емф. Скопје, кн. 2 (1968), 5-8
- [7] Шутов Э.Г., Полугруппы с идеальными подполугруппами. Матем.Сбор. (новая серия), Т.57, 1962, 179-186