MULTIQUASIGROUPS AND SOME RELATED STRUCTURES

G. ČUPONA, J. UŠAN, Z. STOJAKOVIĆ

The purpose of this paper is to show that the class of multiquasi-groups is a convenient extension of the class of quasigroups. In the first part of the paper we give four interpretations of the notion of an [n, m]-quasigroup: (i) as a structure with a "vector valued" operation, (ii) as an algebra with a strongly orthogonal system of quasigroups, (iii) as an algebra with an orthogonal system of operations, and (iv) as a structure with a finitary relation. In the second part of the paper we show that on each (nontrivial) [n, m]-quasigroup it can be constructed an n-dimensional n + m-net, and conversely, each n-dimensional n + m-net can be coordinatized by an [n, m]-quasigroup. Partial multiquasigroups are considered in the third part of the paper, and it is shown that every partial [n, m]-quasigroup can be embedded in an [n, m]-quasigroup.

1. Let Q be a nonempty set, n and m positive integers, and $f: (x_1, \ldots, x_n) \mapsto f(x_1, \ldots, x_n)$ a mapping from Q^n into Q^m . Then we say that Q(f) is an [n, m]-groupoid, and the n-ary operations f_1, f_2, \ldots, f_m defined by:

$$f(x_1,\ldots,x_n)=(y_1,\ldots,y_m)\Leftrightarrow (\forall i\in N_m)\ y_i=f_i(x_1,\ldots,x_n),$$

are called the component operations of f and this is denoted by $f = (f_1, ..., f_m)$.

An [n, m]-groupoid Q(f) is said to be an [n, m]-quasigroup iff the following statement is satisfied:

(A). For each ,vector" $(a_1,\ldots,a_n)\in Q^n$ and each injection φ from $N_n=\{1,2,\ldots,n\}$ into N_{n+m} , there exists a unique vector $(b_1,\ldots,b_{n+m})\in Q^{n+m}$ such that $b_{\varphi(1)}=a_1,\ldots,b_{\varphi(n)}=a_n$ and:

$$f(b_1,\ldots,b_n)=(b_{n+1},\ldots,b_{n+m}).$$
 (1)

It is clear that the following proposition is satisfied.

1.1. An [n, m]-groupoid Q(f) is an [n, m]-guasigroup iff the sequence f_1, \ldots, f_m of component operations of f satisfies the statement (A') which is obtained from (A) by replacing (1) by: $(\forall i \in N_m) f_i(b_1, \ldots, b_n) = b_{n+i}$.

A sequence f_1, \ldots, f_m of *n*-ary operations on a set Q is said to be a strongly orthogonal system of operations if it satisfies the statement (A'). And, a sequence g_1, \ldots, g_{n+m} of *n*-ary operations on a set Q is called orthogonal if the following statement is satisfied.

(B). For each $(a_1, \ldots, a_n) \in Q^n$ and each injection $\varphi : N_n \to N_{n+m}$ there exists a unique vector $(c_1, \ldots, c_n) \in Q^n$ such that:

$$(\forall i \in N_n)$$
 $g_{\varphi(i)}$ $(c_1, \ldots, c_n) = a_i$.

The following proposition shows that there is an equivalence between the notions of orthogonal system of operations and [n, m]-quasigroups.

1.2. An [n, m]-groupoid Q(f) is an [n, m]-quasigroup iff there exists an orthogonal system of n-ary operations g_1, \ldots, g_{n+m} such that:

$$f(x_1,\ldots,x_n)=(x_{n+1},\ldots,x_{n+m})\Leftrightarrow$$

$$(\exists t_1,\ldots,t_n\in Q) \ (\forall i\in N_{n+m}) \ x_i=g_i\ (t_1,\ldots,t_n).$$
 (2)

Proof. If Q(f) is an [n, m]-quasigroup and if g_1, \ldots, g_{n+m} are defined by

$$f(x_1,\ldots,x_n)=(x_{n+1},\ldots,x_{n+m})\Leftrightarrow (\forall i\in N_{n+m})\ x_i=g_i(x_1,\ldots,x_n),$$

then an orthogonal system of *n*-ary operations g_1, \ldots, g_{n+m} is obtained. And conversely, if g_1, \ldots, g_{n+m} is an orthogonal system of *n*-ary operations on Q, and if the [n, m]-groupoid Q(f) is defined by (2), then Q(f) is an [n, m]-quasigroup.

As a consequence from 1.1 and 1.2 (or directly) we obtain the following connection between orthogonal and strongly orthogonal systems of operations.

1.3. A sequence of *n*-ary operations f_1, \ldots, f_m on a set Q is a strongly orthogonal system iff the sequence $g_1, \ldots, g_n, f_1, \ldots, f_m$ is an orthogonal system, where g_1, \ldots, g_n are defined by: $(\forall i \in N_n)$ g_i $(x_1, \ldots, x_n) = x_i$.

It is easy to see that in a strongly orthogonal system of n-ary operations on a set Q all operations are n-quasigroups.

An orthogonal system of n-quasigroups for n = 2 is a strongly orthogonal system, but for n > 2 a system of n-quasigroups which is an orthogonal system need not be a strongly orthogonal system.

An n + m-ary relation $\rho \in Q^{n+m}$ is called an $[n \, m]$ -quasigroup relation if it satisfies the statement (A") obtained form (A) by replacing (1) by: ρ (b_1, \ldots, b_{n+m}) .

The proof of the following proposition is also clear.

1.4. Q(f) is an [n, m]-quasigroup iff the relation ρ defined by:

$$\rho(x_1,\ldots,x_{n+m}) \Leftrightarrow f(x_1,\ldots,x_n) = (x_{n+1},\ldots,x_{n+m})$$

is an [n, m]-quasigroup relation.

Thus, we obtained four interpretations of the notion of [n, m]-quasigroup. Further on we shall use mainly the last interpretation, i.e. by an "[n, m]-quasigroup" we shall mean a structure $Q(\rho)$ where ρ is an [n, m]quasigroup relation. Then, we shall sometimes say that $Q(\rho)$ is a ,multiquasigroup", if it is not necessary to emphasize n and m.

The proofs of the following properties are straightforward.

1.5. Let $\rho \subseteq Q^{n+m}$ and ψ be a permutation of N_{n+m} . Then $Q(\rho)$ is an [n, m]-quasigroup iff $Q(\rho_{\psi})$ is an [n, m]-quasigroup, where:

$$\rho_{\psi}(x_1,\ldots,x_{n+m}) \Leftrightarrow \rho(x_{\psi(1)},\ldots x_{\psi(n+m)}).$$

 $(Q(\rho_{\psi}))$ is called ψ parastroph of the multiquasigroup $Q(\rho)$.)

1.6. Let $\rho \subseteq Q^{n+m}$ and let $\xi = (\xi_1, \ldots, \xi_{n+m})$ be a sequence of permutations of Q. Then $Q(\rho)$ is an [n, m]-quasigroup iff $Q(\rho^{\xi})$ is an [n, m]-quasigroup, where:

$$\rho \xi (x_1, \ldots, x_{n+m}) \Leftrightarrow \rho (\xi_1 (x_1), \ldots, \xi_{n+m} (x_{n+m})).$$

 $(Q(\rho^{\xi}))$ is called ξ -isotope of $Q(\rho)$.)

1.7. Let $Q(\rho)$ be an [n, m]-quasigroup, $a_1, \ldots, a_k \in Q$, k < n, and ρ an injection form Q^k into Q^n . Then $Q(\rho)$ is also an [n-k, m]-quasigroup, where:

$$\rho'(x_1,\ldots,x_{n+m-k}) \Leftrightarrow \rho(x_1,\ldots,x_{n+m}) \wedge (\forall i \in N_k) x_{\varphi(i)} = a_i. \square$$

1.8. An [n, 1]-groupoid Q(f) is an [n, 1]-quasigroup iff Q(f) is an n-quasigroup. \square

1.9. $Q(\rho)$ is a [1, m]-quasigroup iff there is a sequence ξ_1, \ldots, ξ_m of permutations of Q such that:

$$\rho(x, x_1, \ldots, x_m) \Leftrightarrow (\forall i \in N_m) x_i = \xi_i(x). \square$$

1.10. If |Q|=1, and $\rho=Q^{n+m}$, then $Q(\rho)$ is an [n, m]-quasigroup. An [n, m]-quasigroup $Q(\rho)$ is called nontrivial if $|Q| \ge 2$, $n \ge 2$, $m \ge 1$.

We remark that:

(i) The assumption that m and n are positive integers may be omited, and then we would obtain that there exist only trivial [0, m]-quasigroups, and [n, 0]-quasigroups. Namely, $Q(\rho)$ is an [n, 0]-quasigroup iff $\rho = Q^n$, and $Q(\rho)$ is a [0, m]-quasigroup iff $|\rho| = 1$.

- (ii) The notion of an [n, m]-loop can be defined in a usual way, but it is easy to see that proper multiloops do not exist. We do not see any convenient definition of a proper multigroup.
- 2. Let P and B be two nonempty sets, $B = B_1 \cup \ldots \cup B_{n+m}$ a partition of B, where $n \ge 2$, $m \ge 1$, and I is a subset of $P \times B$ (the elements of P are called "points" and those of B "blocks".) The structure $(P; B_1, \ldots, B_{n+m}; I)$ is called an n-dimensional n + m-net (or simply: an [n, n + m]-net) if the following statements are satisfied.
- (i) If $p \in \mathbf{P}$ then there exists exactly one sequence $B_1, \ldots, B_{n+m} \in \mathbf{B}$ such that pIB_s , $B_s \in \mathbf{B}_s$, for all $s \in N_{n+m}$.
- (ii) If $\varphi: N_n \to N_{n+m}$ is an injection and $B_s \in \mathbf{B}_{\varphi(s)}$ then there exists exactly one $p \in \mathbf{P}$ such that pI \mathbf{B}_s for all $s \in N_n$.

We shall show that there exists an equivalence between the theory of [n, n+m]-nets and [n, m]-quasigroups.

2.1. Every nontrivial [n, m]-quasigroup induces an [n, n+m]-net.

Proof. Let $Q(\rho)$ be a nontrivial [n, m]-quasigroup. Define a set of "points" by:

$$\mathbf{P} = \{(x_1, \ldots, x_{n+m}) \mid \rho (x_1, \ldots, x_{n+m})\}.$$

If $x \in Q$ and $s \in N_{n+m}$, then:

$$B_{\delta}^{x} = \{(x_{1}, \ldots, x_{n+m}) \in \mathbf{P} \mid x_{\delta} = x\}$$

is called a "block". And,

$$\mathbf{B} = \{B_s^x \mid s \in N_{n+m}, \ x \in Q\}$$

is the set of all blocks. Further, let B_1, \ldots, B_{n+m} be defined by:

$$\mathbf{B}_s = \{B_s^x \mid x \in Q\}.$$

Clearly, **B** si a disjoint union of B_1, \ldots, B_{n+m} .

It is easy to see that $(P; B_1, \ldots, B_{n+m}; I)$ is an [n, n+m]-net, where $pIB_s^x \Leftrightarrow p \in B_s^x$. (We say that this net is induced by the given multiquasigroup.)

2.2. Every [n, n+m]-net induces an [n, m]-quasigroup.

Proof. Let $(P; B_1, \ldots, B_{n+m}; I)$ be an [n, n+m]-net.

We shall show that all the sets B_1, \ldots, B_{n+m} have the same cardinal number.

First we note that (i) and $P \neq \emptyset$ imply that all the classes of blocks B_1, \ldots, B_{n+m} are nonempty.

Let $r, s \in N_{n+m}$, $r, s \notin \{i_2, \ldots, i_n\}$, $1 \le i_2 < \ldots < i_n < n+m$, and choose $B_v \in \mathbf{B}_{i_v}$ in an arbitrary way. If $B \in \mathbf{B}_r$, then by (ii) there exists exactly one point p such that pIB and pIB_v , for each $v \in \{2, \ldots, n\}$. By (i) there exists exactly one $B' \in B_s$ such that pIB'. This implies that a mapping ψ_{sr} : $B \mapsto B'$ of B_r into B_s is defined. In the same manner we define a mapping ψ_{rs} : $B_s \to B_r$. It is easy to see that

$$\psi_{rs}\,\psi_{sr}=1_{B_r},\quad \psi_{sr}\,\psi_{rs}=1_{B_s},$$

and this implies that $\psi_{rs} = (\psi_{sr})^{-1}$ is a bijection.

Let Q be a set and φ_i : $Q \to \mathbf{B}_i$ a bijection for every $i \in N_{n+m}$. We define an n+m-ary relation φ in Q by:

$$\rho(x_1,\ldots,x_{n+m}) \Leftrightarrow (\exists p \in \mathbf{P}) \ (\forall i \in N_{n+m}) \ p \ I \psi_i(x_i).$$

It can be easily seen that $Q(\rho)$ is an [n, m]-quasigroup, and that the [n, n+m]-net induced by $Q(\rho)$ is isomorphic to the given [n, n+m]-net.

2.3. If $Q(\rho)$ and $Q'(\rho')$ are two [n, m]-quasigroups induced by an [n, n+m]-not, then they are isotopic.

Proof. Assume that (P; B_1, \ldots, B_{n+m} ; I) is an [n, n+m]-net, $\varphi_i \colon Q \to B_i$, $\varphi_i' \colon Q' \to B_i$ are bijections for each $i \in N_{n+m}$, and $Q(\rho)$, $Q'(\rho')$ are the [n, m]-quasigroups defined as in the proof of 2.2.

If the sequence of bijections $\psi_1: Q \to Q', \ldots, \psi_{n+m}: Q \to Q'$ is defined by $\psi_i = \varphi_i'^{-1}\varphi_i$ then we obtain an isotopy from $Q(\rho)$ into $Q'(\rho')$.

3. A substructre of an [n, m]-quasigroup (in general) is not an [n, m]-quasigroup, but it is a partial [n, m]-quasigroup according to the following definition.

If $\rho \subseteq Q^{n+m}$ is an n+m-ary relation on a nonempty set Q, then the structure $Q(\rho)$ is called a partial [n, m]-quasigroup if the following condition is satisfied.

(C) Let
$$\varphi \colon N_n \to N_{n+m}$$
 be an injection. If
$$\rho (x_1, \ldots, x_{n+m}), \ \rho (y_1, \ldots, y_{n+m})$$
 and $(\forall i \in N_n) \ x_{\varphi(i)} = y_{\varphi(i)}$ then $(\forall j \in N_{n+m}) \ x_j = y_j$.

Clearly:

3.1. Every [n, m]-quasigroup is a partial [n, m]-quasigroup, and the class of partial [n, m]-quasigroups is hereditary.

Now, we shall show that:

3.2. Every partial [n, m]-quasigroup $R(\rho)$ is a substructure of an [n, m]-quasigroup $R'(\rho)$.

Proof. Let $\varphi: N_n \to N_{n+m}$ be an injection, and D_R^{φ} the subset of R^n defined by:

$$(a_1,\ldots,a_n)\in D_R^{\varphi}\Leftrightarrow (\exists b_1,\ldots,b_{n+m}) [\rho(b_1\ldots b_{n+m})\wedge (\forall i\in N_n)a_i=b_{\varphi(i)}].$$

Denote R by R_0 , and ρ by ρ_0 . Assume that $R_k(\rho_k)$ is a partial [n, m]-quasi-group, and define $R_{k+1}(\rho_{k+1})$ in the following way.

Let $\mathbf{a}=(a_1,\ldots,a_n)\in R_k^n\setminus D_k^{\varphi_1}$), where $\varphi\colon N_n\to N_{n+m}$ is an injection. Define a sequence $(1_{\mathbf{a}^{\varphi}},\ldots,(n+m)_{\mathbf{a}^{\varphi}})$ in the following way

$$(\forall i \in N_n) i_{\mathbf{a}^{\varphi}} = a_i \text{ and } (\mathbf{a}, D_k^{\varphi}) = \{j_{\mathbf{a}^{\varphi}} | j \notin \{\varphi(1), \ldots, \varphi(n)\}\}$$

consists of m elements and it is disjoint with R_k ; it is also assumed that:

$$(\mathbf{a}, D_k^{\phi}) \cap (\mathbf{b}, D_k^{\psi}) \neq \emptyset \Leftrightarrow \mathbf{a} = \mathbf{b} \wedge \varphi = \psi.$$

Now, we define the structure R_{k+1} (ρ_{k+1}) by:

$$R_{k+1} = R_k \cup \bigcup_{\varphi, a} (a, D_k^{\varphi})$$

$$\rho_{k+1} = \rho_k \cup \{1_{\mathbf{a}^{\mathbf{o}}} \dots (n+m)_{\mathbf{a}^{\mathbf{o}}} \mid \mathbf{a} \in R_k^n \setminus D_k^{\mathbf{o}}, \, \mathbf{o}\}.$$

It can be easily seen that R_{k+1} (ρ_{k+1}) is a partial [n, m]-quasigroup. Finaly, let R' (ρ') be defined by:

$$R' = \bigcup_k R_k, \quad \rho' = \bigcup_k \rho_k.$$

The structure $R'(\rho)$ is a partial [n, m]-quasigroup, for it is the union of the chain $\{R_k(\rho_k) \ k=1, 2, \ldots\}$ of partial [n, m]-quasigroups, such that $R_k^n \subseteq D_{k+1}^{\varphi}$ for each injection $\varphi: N_n \to N_{n+m}$, and this implies that $R'(\rho)$ is an [n, m]-quaisgroup.

It is natural to say that $R'(\rho)$ is the universal covering of $R(\rho)$. The universal covering $B'(\rho)$ of the partial [n, m]-quisigroup $B(\emptyset)$ is in fact the free [n, m]-quasigroup with a base B.

As consequences of 3.2 we obtain the following propositions.

- 3.3. If Q is an infinite set then there exists an [n, m]-quasigroup $Q(\rho)$. \square
- 3.4. The free [n, m]-quasigroup with a finite (non-empty) base is countable and infinite. \square

Making an obvious modification of the proof of 3.2, we obtain that the following statement is also satisfied.

- 3.5. Let $\varphi: N_n \to N_{n+m}$ be an injection, and $R(\rho)$ a partial [n, m]-quasigroup such that $D_R^{\varphi} \neq R^n$. There exists a partial [n, m]-quasigroup $Q(\rho)$ with the following properties:
 - (i) $Q(\rho)$ is an extension of $R(\rho)$;
 - (ii) $\psi \colon N_n \to N_{n+m}$ is an injection such that $D_Q^{\psi} = Q^n$ iff $\psi = \varphi$;
 - (iii) If R is infinite then |R| = |Q|.

Denote by $\Sigma_R^{n,m}$ the set of n+m-ary relations ρ on a set R such that $R(\rho)$ is a partial [n, m]-quasigroup. By an application of Zorn's lemma we obtain the following proposition.

3.6. Every relation $\rho \in \Sigma_R^{n,m}$ is contained in a maximal relation $\tau \in \Sigma_R^{n,m}$.

The following statements are also obvious.

- 3.7. If $\rho \in \Sigma_R^{n,m}$ and if $\varphi \colon N_n \to N_{n+m}$ is an injection such that $D_{\rho}^{\varphi 1} = R^n$ then ρ is a maximal element in $\Sigma_R^{n,m}$.
 - 3.8. If n+m=n'+m' and $n \ge n'$, then $\sum_{R}^{n'}, m' \subset \sum_{R}^{n}, m'$

Now, we shall show that every finitary relation on a set R induces a partial multiquasigroup.

3.9. If $\rho \subseteq R^k$ $(k \ge 0)$, then there exist n, m such that k = n + m and $R(\rho)$ is a partial [n, m]-quasigroup.

Proof. If $\rho = \emptyset$ or $|\rho| = 1$, then $R(\rho)$ is a partial [n, m]-quasigroup for each pair of nonnegative integers n, m such that n+m=k. Let $|\rho| \ge 2$, and let d be the least positive integer such that there exist two vectors \mathbf{a} , \mathbf{b} with exactly d different components (in other words, d is the "code distance" of ρ). Then, $R(\rho)$ is a partial [k-d+1, d-1]-quasigroup. \square

REFERENCES

- Denes J., Keedwell A.D., Latin squares and their applications, Akadémiai Kiadó Budapest, 1974.
- [2] Белоусов В. Д., п-арные квазигруппы, Кишинев, 1972.
- [3] Белоусов В. Д., Конфигурации в алгебраических сетях, Кишинев, 1979.
- [4] Одобеску С. С., Изотопия мультиопераций, исслед. по теор. квазигрупп и луп, Кишинев, 1973, 127—132.
- [5] Сандик М. Д., Обратимые мультиоперации и подстаповки, Acta Sci. Math., 39,1977, 153—162.

 $^{^{1} (}a_{1}, \ldots, a_{n}) \in D_{\rho}^{\varphi} \Leftrightarrow (\exists b_{1}, \ldots, b_{n+m}) [\rho (b_{1}, \ldots, b_{n+m}) \land (\forall i \in N_{n}) a_{i} = b_{\varphi(i)}]$

[6] Стојменовски Ќ., "За [т, п]-квазигруйише", Год. зб. Матем. фак., Скопје 28, 1978, 33—37.

[7] Трпеновски Б., Чупона Ѓ., [т., п]-*ipyūougu*, Билтен Друшт. матем. физ. СРМ, 21, Скопје, 1970, 19—29.

РЕЗИМЕ

МУЛТИКВАЗИГРУПИ И СТРУКТУРИ ПОВРЗАНИ СО НИВ

ř. ЧУПОНА, J. УШАН, З. СТОЈАКОВИК

Во работава се покажува дека мултиквазигрупите се подесно проширување на класата квазигрупи. Во првиот дел на работава се даваат четири интерпретации на поимот мултиквазигрупа: (i) како алгебра со една мултиоперација, (ii) како алгебра со силно ортогонален систем квазигрупи, (iii) како алгебра со еден ортогонален систем операции, и (iv) како една релациска структура. Во вториот дел се покажува дека на секоја [n,m]—квазигрупа може да се конструира n—димензионална m+n—решетка, а и обратно дека секоја таква решетка може да се координира со една [n,m]—квазигрупа. Делумни мултиквазигрупи се разгледуваат во третиот дел, а главниот резултат на овој дел е дека секоја делумна мултиквазигрупа.

University "Kiril i Metodij", Faculty of Mathematics, Skopje.

Faculty of Natural Sciences, Institut of Mathematics, Novi Sad.