ON A REPRESENTATION OF ALGEBRAS IN SEMIGROUPS
G. CUPONA

0. Preliminary definitions and results. Necessary definitions and main
results will be stated first.

0.1. Definitions. Let F be a nonempty set of finitary operators, such
that Fy' ' F; = (7). (F, is the set of n-ary operators in F). If 4 is a set and each
n-ary operator f is interpreted as an n-ary operation on 4, then A = (4; F)
is said to be an Falgebra. Let S = (§;.) be a semigroup and £ : 4 — § such
a mapping that

E(fx .. %) =8 (x) ... E(xp) ©.1)

for each n-ary operator f¢ F, and all x,,...,x,€ A. Then we say that
E:A-—»>Sisa semigroup homomorphism. The notion of un i-

versal semigroup homomorphism is defined in the usval —
manner. If A : A — A 7 is the universal semigroup homomorphism, then A * is

called the universal semigroup, for A. The cardinal number
[A(4)| of theset A (4)1s called the semigroup order (i.c. scorder)
of A, and it is denoted by |A|. The algebra A is said to be s-finite
(s-infinite) iff ||A] is finite (infinite); if A =1 then we say that A is

s-singular. If the universal semigroup homomorphism A : A — A" is
a monomorphism, then A is said to be a semigroup F-algebra.

3 An algebra A = (4;F) is said tobe a weak Fassociative
iff for all fC F,, g€ F, and i€{1,2,...,n} the following identities arc
satisficd

J8x,. e Xmpn—1 =& X1 Xppm—1

0.2
=fX . Xg 18X .. Xmpn—1 - ©2)

A weak F-associative is called an F-associative iff for every pair of
sequences f3,...,fr, &1,...,8; such that

f“EFN‘-l-l! g}EFmJ'-l-l’ n1+"‘+nr=m1+“'+m'
the following identity is satisfied:
fl-..erQ...x“=gl...g‘x'...x”. (0-3)
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6 G. Cupona

Throughout the paper, by ¢ will be denoted the greatest common
divisor of the numbers in the set:

J={n—1|Fy=5=} (0.4)

0.2 Main results

(i) A is s-finite iff A" is finite.

(i) If A is s-infinite then [A| = 4"

(iii) If A is s-singular, then A ~is the cyclic group with order d.

(iv) If & (# 0) is a given cardinal number, then each F-algebra is a
subalgebra of an F-algebra with s-order o,

~ (v) If A is a set and « a cardinal such that 0 < « <C 4], then there is
an F-algebra (4: F) with s-order a.

(vi) If |F| = 2, then the class of weak F-associatives satisfies the pro-
positions (v).

(vii) If the direct product of a collection of algebras is s-singular, then
all algebras of the collection are s-singular. If \F| >2and [ Z> 2, then there
exist I-collections of s-singular weak F-associatives whose direct products
are not s-singular.

(viii) Every semigroup F-algebra is an F-associative, and all F-asso-
ciatives are semigroup F-algebras iff dEJ.

(ix) An associative is s-finite iff it is finite. If an F-associative A = (4:F)
is infinite then Al = A

(x) An associative (A: F) is s-singular iff 4] = 1.

1. Universal_semigroup homomorphisms. Let A = (A; F) be an F-al~

gebra. A semigroup homomorphismi: A— A" issaidtobe a universaf

one iff for every semigroup homomorphism Z:A —+ S there is a unique
homomorphism ¢ : A~ — S such that £ =g &

Clearly:

1.1. 2 :A —> A%and A, : A > B are universal semigroup homomor-
phisms, then there is a unique isomorphisme : A"~ — Bsuch tha 2, = oA 2

The existence of the universal semigroup homomorphism will be shown

now.
Let T = (T:-) be the semigroup which is freely generated by the
carrier 4 of the algebra A. Thus,

T=A{a;...05|G1,.v::0nEA4A,n_>1} (1.1)

is the set of finite sequences on A, and the operation is the usual concatena-
tion of sequences.

Let

a=ay...q; W=8...b, apbc4.
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On a Representation of Algebras in Semigroups 7

We write a 7o b iff there exist ¢, ¢';..... ¢, ¢ . ... ¢ €T and conti-
nued products IT'; (¢'y), I1”; (¢”’;) in A such that

e =t =ty =T @), by =TEG ). (12

(If, for example, ¢’ = ¢’y < 4, then a, =II';(¢y) =¢'y.)

Now we shall prove the following statement:

1.2. The transitive extension t of 7, is a congruence on T, and the ca-
nonical mapping:

Ara—ar (1.3)

is a universal semigroup homomorphism from A into A" = T/,

Proof. Clearly, =, is a reflexive and symmetric relation in 7, such

that
UTp VD UW Tp VW, WUTGW Y,

and this implies that © is a congruence on T.

If fEF,, a=fa,...a, in A, then axya,...a, in T, ie.
[r@ =a"=a~...a5°
=A(a)...x(ay).

Thus, A: A — A” is a semigroup homomorphism,

Let S =(S;-) be a semigroup, and £ :A — S a semigroup homo-
morphism. If (1.2) is satisfied, and if ¢ =e;...¢, (¢; € A), then we have:

E(@)...8(a) =E(e)...5(e) =E(b)...E(by),
and this implies that
@:(ay,...a)—E(a)...E(a)

is a mapping from 4 * into §. Clearly, ¢ is a homomorphism from A * into
S and it is the unique mapping such that £ =¢ .

13. Let A =(4;F),A’ =(A4';F) be F-algebras and A:A — A"
A A" — A’ * the corresponding universal semigroup homomorphisms. If
¢ :A— A’ is a homomorphism, then there is a unique homomorphism
¢~ :A” 5 A'” such that Mo =" A 3

Proof. Let T, T’, =~ and 7’ be defined as in the proof of 1.2. It is easy
to show that: g

Apee@pvby. by o9 (ay)...9(@) v e By ...0(0,),

&
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8 G. Cupona

and this implies that

e”i(ay...a) > (@(@)...9(@)"

is a mapping from 4 ~ into A"~ , Clearly, ¢ is a homomorphism from A “ into
A’”, and itis theunique mapping which satisfies the equation 2’ ¢ =9~ A. |j

It is easy to show that:

1.4.~ is a covariant functor from the category of F-algebras into the
category of semigroups. ff
2. 18518 ©: A — A'isan epimorphism (isomorphism), then ¢~ is an
epimorphism (isomorphism) too.

Proof. If ¢ is an epimorphism, and (¢',...a’,)"" , then
@1...d )" =9 ((a... )

where a'y = @ (ap).

If ¢ is an isomorphism then:

e @ N =@ V" =>UN", 0 Ve "=01)" . i

We notice that the statement for monomorphisms is not true. Namely
the proposition 2.8 states that each algebra A is a subalgebra of an s-sin-
gular algebra B. Thus, if A is not singular, then the embedding homomor-

phism. e:A—+B is a monomorphism, but ¢*:4” +B" is not a
monomorphism.

In the following, T, A, 4 and = will have the same meaning as in the
proof of 2.1. If k is a positive integer, then A4, is a subset of 4 * defined by:

A ={@@y...a)%| Gy, ..., G € A). (1.4)

16. If n€J then A =4,,...U 4,.
Proof. This is a consequence from the following relations:

neEJ =>4, 4,C 4
AA=A1LJ L_,JA;-UA#.'_)  lf P
1.7. A is s-finite iff A~ is finite. If A is s-infinite then ||A|| = 4" |.
Proof. From (1.4) and 1.6 follows that if n€J then
Al << |4~ <Al + (A2 + ... + (A B

The following propositions are obvious.
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On a Representation of Algebras in Semigroups 9

18. |A| =« iff [£(4)|<C « for every semigroup homomorphism
£:A—S, and | (4)| = « for a semigroup homomorphism 7 : A — S.

1.9. If A’ is a homomorphic image of A, then ||A’|| < ||A]|.
1.10. If F'CF then ||(4;F) || <] 4;F)|.

2. Semigroup-singular algebras. Some example of s-singular algebras
will be given first.

2.1. Let A be a nonempty set, 0 a fixed element of 4, and ¢ : x — x’
an injection from A into 4. If f is an n-ary operation on A such that

=z A et 0=0 (2.1)

then the algebra A = (4;f) is s-singular.
Proof. If £ : A — S is a semigroup homomorphism, and a & 4, then

5 (@) =E(fam) =5 (/2" a7
=@ E (@ =E " fa av)
— (a1 0) =£(0). B

2.2. Let f, g be two distinct elements of F, such that SfEF,, g€ Fy.
If there is an element e € A such that

frev—1l=x gxeh—1l=eg, (2.2)

for every x € A, then the algebra (A; F) is s-singular.

Proof. If £ : A— S is a semigroup homomorphism and a¢€ A then
we have:

£ (@) =& (gfaemtn—*) =E (a) § ()2
= £ (fgaem™tn—12) = (fen)
=E() }

23 Lt F=F UF ., FON\F' =@, F#Q.F'+ Q.G =(G;")

is a semigroup with a zero 0 and an identity e, and ifan F-algebra G (F', F"’)
is defined by:

fEFNF, > fxy...xn =0 (2.3)
BEF'NME, 28X1...Xp = Xg.4.%m,

then G (F', F"') is an s-singular weak F-associative.



10 : G. Cupona

Proof. It is easy to see that G (F’, F") is a weak F-associative. Let
£ :G(F', F")— S be a semigroup homomorphism. If f€ F,NF', g € B F"
and « £ G, then we have:

£(a) =E(gn—taem—hm—D)=E () £ (e) ®—D D)
= E (fm—l ae n—1b (m--.l)) = E (0)’

and this implies that G (F', F"') is s-singular. §

24. If A is a nonempty set, and f an n-ary operator, then there is an
s-singular algebra (4;f).

Proof. Let o :x - x' be an injective transformation of 4 and 0 a
fixed element of A4 such that

X' =20t X' =0 z2=0] (2.4)

Clearly, there is an n-ary operation on f such that (2.1) is satisfied, and if f
is such an operation, then by 2.1 (4; f) is s-singular. §

25.1If | F| >>2 and if 4 is a nonempty set, then there is an s-singular
weak F-associative.

Proof. First, a semigroup (4; +) with a zero and an identity can be built,
and then an s-singular weak F-associative can be obtained as in 2.3. |

If F=F, ={f}, then a weak associative (4;f) is called an n-semi-
group. It is well known that:

2.6. If (4; 1) is an n-semigroup, then there is a semigroup B = (B; .)
such that 4 Z B and

oo Koy = s eaXs

for all x,,...,x, ¢ 4. And, if B is generated by A, then B is said to be a
covering semigroup of (4; f).([4], p. 25. §

As a consequence of 2.6, we obtain that the assumption |F| =2 is
essential in 2.5. Namely, we have:

27. An n-semigroup (4; f) is singular iff (4| = 1. }

Now, we shall show that the class of s-singular F-algebras is not
hereditary.

2.8. Every algebra is a subalgebra of an s-singular algebra.

Proof. Let A = (A; F) be an F-algebra.

(i) Let £€ F,, g € Fy be two distinct elements of F, and e & A. An
algebra B = (4 () {e}; F) can be defined such that A is a subalgebra of B,
and (2.2) is satisfied for all x € B. Then, by 2.2, B is s-singular,

(ii) Let F=F, = {f},andlet Bbeasetand ¢ : x —» x’ an injective trans-
formation of B, such that 4 C B\ ¢ (B), 0€ B, and (2.4) is satisfied. Then,
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On a Representation of Algebras in Semigroups 11

an algebra B = (B;f) can be defined in which A is a subalgebra and (2.1) is
satisfied, By 2.1, B is s-singular.

2.9 The class of subalgebras of s-singular weak F-associatives is a
proper subclass of the class of weak F-associatives.

Proof. 1) Let A be a weak F-associative and A:A — A" the universal
semigroup homomorphism. In a similar way as in the proof of 4.6, it
can be shown that if a,b€ A and A(a) =2 (), then there exist two
sequences of operators f;...f,, £;...gs such that:

10 oSy AX] . SR ==L By UKy . o Xy (2.5)
for all x;,..,x, € 4.

2) Let B be a nonempty set and A the weak F-associative which
is freely generated by B. It is easy to see that if a € C and b¢ 4 are two
distinct elements of 4, then no equation of the form (2.5) is satisfied in A.
Therefore A can not be embedded in an s-singular weak F-associative.

2.10. If A is an s-singular F-algebra, then A* is the cyclic group with
d elements.

Proof. Let C; be the cyclic group with a generator ¢ and order d. It is
easy to see that the mapping £ : A — C; defined by: (yx) £ (x) =cisa uni-
versal semigroup homorphism. §

3. Algebras with arbitrary semigroup orders. The main results in thiS
part are statements 3.6 and 3.7 which are generalizations of 2.4, 2.5, 2.8,
and 29.

31. If F(A)=U U fA» and A*=AN_F(4),
"0 fEF
then
Al = |4*] + 1.
Proof. If 0 & A%, S = A% {0}, (yx,p€S) ¥y =0 and
. x if x¢gA4*
Ex) =1, . .
0 if xCAN\ 4%
then £ : A — (S; -) is a semigroup homomorphism such that & (4) =1 +
+|4*. §
As a consequence of 3.1 we obtain that:
3.2. If A is s-singular, then it is surjective, i.e. F(4) =A4. §
3.3. If A = (4; F) is a subalgebra of B = (B; F), then

(1Bl << [[A] + |B™ 4]



12 G. ¢upona

Proof. Let Az :B— B” be the universal semigroup homomorphism.
The restriction £ = Az |4 : A — B " is a semigroup homomorphism and this
implies that:

B = |2 (B) | < |Ap (4) | + [Ag (B \ 4)|
<|EA@ |+ B\ 4|< Al + B\ 4).

3.4. Let A = (A; F) be an algebra, C aset disjoint with 4 and 0 a fixed
element of C. If B = 4 |1 C and if an algebra B = (B; F) is defined by:
(i) A is a subalgebra of B;

(i) FEF, (byy. ... by) EBr\ A% = fb, ... b, =0,
then

(Bl = [A]| +|C.

(The algebra B will be denoted by A (C).)

Proof. Let £:A—S be a semigroup homomorphism such that
[E(4)| = ||A]|, and S N C = (. Define a groupoid D = (S U C; «) such
that S is a subgroupoid of D and

(x, ))ED XD\ SXS=2>x#y=0

Clearly, D is a semigroup and the mapping 7 : B — D defined by

n(x)={“j? if x€d

if x€EC
is a semigroup homomorphism 7 :B — D. We also have:
B =|n@)|+ 1@ =|EMD]|+|C|=
= |[Al| +{C};

and this implies that ||A|| 4 |C| <(||B||, whence by 3.3 we obtain that the
equality holds. [§

It is obvious that:

3.5. If A is a weak F-associative, then A (C)is also a weak F-associative. [

3.6. Let « (# 0) be a cardinal number. Every algebra is a subalgebra
of an algebra with semigroup order «.
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Proof. Let A be an F-algebra. By 2.8, A is a subalgebra of an s-sin-
gular algebra B. Let C be a nonempty set such that B " C = (7, andoe =1+
+ |C!. Then A is a subalgebra of B (C). By 3.4, we have:

IB(C)| =Bl +|C|=1+[C|=e

3.7. Let A be aset and «(#0) a cardinal number.

(i) There exists an F-algebra A = (4; F) with semigroup order o iff
a < |A]

(i) If |[F|>>2 and «<_|A4|, then there is a weak F-associative
A = (A4; F) with semigroup order a.

Proof. (i) If A =(4;F) is an algebra then ||Al = |2 (4)|<C /4]

Assume that < (4], and A=BUC, BNC=, 1+|C|=a
By 2.4 and 2.5 there exists an s-singular algebra B = (B; F), and by 3.4 if
A =B (C)=(4;F), we have

Al ={[Bf| + |C| =1 +[C| =«

(i) By 2.5, 34 and 35. fi

Some properties of semigroup orders of direct products will be shown
now.

38. If (A is a collection of F-algebras, then:

I | A < || TT Af| << I |y
il i€l icI

i€l

Praof. 1€ () : Aj—A is the corresponding collection of univer-

Vit
sal homomorphisms, then
E= M) : TA »TTA"
i€l i1
is a semigroup homomorphism such that
E(IT A4y =I12% (4). A
i€l i€l
As corollary of 3.8 we obtain the following statement.

3.9, If the direct product of a collection of algebras is s-singular, then
all algebras of the collection are s-singular.

The following proposition shows that the converse is not true.
3.10. If |[F| > 2 and |/| 2> 2, then there cxists a collection (Al)f(:; of
-singular weak F-associatives whose direct product is not s-singular.
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14 G. Cupona

Proof. Let F', F”, I' and 1" be nonempty, and

P ZaE =100 e i Tk A A (e A s S T (R
If G is a semigroup with a zero 0 and an identity e (#0), and if:

1€l > Ay =G (F,F"),
iCI" > Ay =G(F", F),

then (A,)'. e is a collection of s-singular weak F-associatives. The direct pro-
duct 4 =TT A, is a weak F-associative which is not surjective, and thus (by
i€l

3.2) it is not s-singular. |/

e [ 4. Associatives, ,Here, it will be shown that nontrivial s-singular asso-

ciatives do not exist (Theorem 4.8) and that the semigroup order of an in.

finite associative is the ordinary order of the associalive (Theorem 4.11)
In the following it will always be assumed that A = (4; F) is an F-asso-

ciative and that K is the additive semigroup of nonnegative intcgers ge-
nerated by J LI {0}.

The following general associative law can easily be shown.
4.1. Letn,, ... ., my, ..., mg €J and n¢ K be such that

gt ...+n=n=my+...+ m

and fy CFy, | +&1€ ij 4 o8 Mg 7o py is a sequence of nonnegative inte-
gers such that p, < p, 4, <mnp + ...+ n, then the following identity is
satisfied:

8- -8 Xo.rXn=JfoXo... [iXp .. . SrXp, .. X

In the following, every continued product [l(x,, ..., x,) will be de-
noted by (xg...xp): if # =0 then II (x) = x,.

The following results (in slighty different formulations) are known.

4.2. The class of semigroup F-algebras is equal to the class of F-asso-
ciatives iff d£J. [3]

4.3. The class of semigroup F-associatives admits homomorphic ima~
ges iff dCJ. [2].

44. A is surjective iff (47 +1) = A, for each n€ K. [2]. R

4.5. (i) There exist ny, ..., n: €J such that every n€ K has a form
n=vfy+ ...+ vgpng where v, > 0. If k is the minimal number with the
above property. then {n,....,m} is uniquely determined and it is called

thra basis of K,
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On a Representation of Algebras in Semigroups 15

(ii) There is a positive integer ¢ such that
*={vd|v>=q)CK,

and if g is the least such a positive number, then K* is said to be the regular
part of K. [1]

46. fncK* v {l,...,n+1}a b€ Aand a7 b, then the following
identity is satisfied in A:
(xl. .o xV_...laxy - x" )‘ =(x1 e xy_l bxv e xn), (4.!)

Proof. fa=a,...a, b=205y...b,;, a;,b;¢ A and a7, b, then by
1.2, there exists an ¢yey...e € T (e, € A) such that the following equations
are satisfied: ‘

tly =(eu-..em°-01 =(emn+l""em0+ml+j)" PR d,.=(...e¢)
@2
bﬂ —:(f’u...epu), lf’l =(epﬂ+1“.e?0+pl+h ...,b,:-(...e,),
and
Pot catprtr=t=my+ ...+m+s 4.3)

Possvos DpyMps oo oy Mg EKL
From (4.3) it follows that d|r < d |s. and if this is satisfied, then
n4r, ntsckK* forndr,nts>qgdanddin-tr, din—+s.
This implies that‘:
Xy oo By RX B )= Ky €T RNt o2 Xg5) (4.9)
== 1 OO S T 1

for- all X175 xXp € A.
Assume now that ¢, b A and atb. Then there exist

045 Cgs v vvrg O ol
such that

aT3 €3 ©1 T Cos o 5. C T 04

and this, by (4.4), implies that:
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16 G. Cupona

[ i - > SO ) [ SIS O v N o=

= (1o By € Xy o Xy)
= X1bxy ... %) B

4.7. If A is surjective, and a, b€ 4, at b, then (4.1) is an identity in
A, for each n€K, and v€{l,...,n+ 1}.

Proof. This is a consequence from 4.4 and 4.6. |
48 If A is s-singular then [4]| =l
Proof. By 3.2, A is surjective, and by 4.7 the following identity is satisfied
(yeeXn) =02 J) =4 |
for all x;,..., Xgs Y1,...sYn €A and n€K.
If m,ncK, then

en=(o-- - Ym)X1...Xn) =Wo.. - Ym—1mX1-..%n)) =cn(=0).
If we define a binary operation on 4 by (yx, ) x-y = ¢, then we
obtain a semigroup (4; -) and the identity mapping] 14 is a semigroup homo-

morphism from A in (A4;-). This implies that A is both s-singular and semi-
group F-associative, and this is possible iff [A| = 1. |§

49. Let {my,..., my} = Q be the basis of the regular part K* of K,
and {ny, ..., n,}=P = K\ K*.

If [|A]|l=a then

AI<A—)[1 +@— D"+ ...+ @—1)"]+ " + ... + ™). (4.5)

Proof. By 4.6, ift mc K*, vE{l,...,m -+ 1}, and if a, bE A are
such that atbh, then

(X5 iy 2 18 X o) e T e Moy DK e 516

This implies that | (A™+ 1) | <Ca™+ ! and thus

B=U A"+tY) > |Bl<aTa™
mEK(‘ > mEQ . (46)
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On a Representation of Algebras in Semigroups 17

By 3.1, we have:
A* = A\ F(4) > |4*| <a—1. : 4.7

Let C = F(A4) \ B. If ¢ C, and if n is the maximal number of P
such that ¢ € (4 * '), then there exist ay, . . ., a, € A*, suchthat ¢ =(a,...a,),
and this, by (4.7), implics that

ICl<@—1 X @— D (4.8)
neP

Finally, (4.6), (4.7), (4.8), and 4 = A4* (U B ) C imply that (4.5)
is satisfied.

The following two statements are direct consequences from 4.9,
4.10. A is s-finite iff it is finite.
4.11. If A4 is infinite then [|A|| = |A].
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PE3VUME
ETHO TIPETCTABYBAME HA AJITEBPM BO IOJIVIPVIII
r.u yitona

Heka A = (A4; F) e anreGpa co HocuTen A H MHOXeCTBO onepartopi Fuieka S = (S:+)
€ nojiyrpyna. 3a npeciukynamero £: 4 —» S penume f€Ka € MONYIPYNEH XOMO-
Mopdu3am,axo (0.1) e nrenTuter 3a cexoj n-aper oneparop /¢ F. [Toumor 3a y # u-
BE€p3ajeH noayrpyned xomomopmiam ki A — 4 ”ce posenysa Ha OOHMEH WAMMiL, W
TPHTOA 3a A " BeNMME JACKd € YHHBEPIAIWA MOAYrpyna TPHAPYNKeHa HA A,
Kapauranunor Gpoj [ 2 (4) | —||A|/ceuka nonyrpyneén pen HaA;akoellAll = 1,
Toraii 3a anreGpaTa A Benume neka € CHHTYyJiapHa. AnreGpara A ce Buka cnad
ACOUMJATHB aKo eeH CIOKCH NMPOMIBOJ He 33BHCH O] PACIOPE/0T HA ONCpPATOPHTE;
A Ce BMKA ACOIM)ATH B AKO CIOKCHHTE NPOHIBOIH 3ABHCAT CAMO O/ HIZUTE EIeMCHTH
01 HOCHTENOT Ha anredpata, HO 1e W 071 HUZHTE ONEPATOPH.

pl
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18 G. Cupona

Ke (opmynmpame HEKOJKY PE3y/ITATH WTO Ce NOKaxaHd Bo padorasa. (i) /Al e
KoHeveH aKo |A”|e komeyen; (ii) axo ||A|| e Geckoreyer, Toram||A|| = |4~ |; (iii) ako A e
cHHTYnapia ajirebpa, Toram A~ e NHKIHYHA IPyna co pea d, xape wro d e HAjroNeMHOT
3aeMHMMKH jJenuTen Ha GpoesuTe o MHoxkecrsoTo (0.4); (iv) ako o (#0) e naneH KapamM-
manen 6poj, Toram cekoja azrebpa ¢ nonanredpa Ha Hekoja anreGpa co MONYrpynNeH pei o
(v) ako ¢ |A| — o u 0 < B < «, Toram nocrou anrebpa (4; F) co momyrpyner pen @3; (vi)
ako e |F| > 2, Toram (iv) u (V) Baxar 3a knacara ciadm F-acoumjarusu; (vii) uxo uupexr-
HHOT MPOHM3BOJ Ha e/IHa KoJeKumja aareGpu e CHHrynapeH, Torail cekoja airebpa oa ko-
JIeKIIHjaTa € CHHTYJapHa, HO ako e |F| = 2, obpaTHOTO He Mopa j1a BaxH; (viii) eaex acoum-
jATHB MMa KOHe4eH MOJYTPYNEH Peil ako € KoHedeH; (iX) LOJYTPYNHHOT pell Ha elieH Gec-
KOHEYEH ACOLMJATHE ¢ CAHAKOB CO PEAOT Ha ACOUMjAaTHBOT; (X) HE MOCTOM HETPHBHjalIeH
CHHTYJIAPEH ACOLMjaTHB.
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