ON SEMIGROUP ASSOCIATIVES*

N. CELAKOSKI

I. PRELIMINARIES

Let A=(A;F) be a universal algebra with the carrier 4 and the
set F of finitary operations. We shall consider in this paper that
FolUF,=0, where Fy={f F|f is an n-ary operation on A4} and that
there exists at least one #>2 such that Fj #0. If f&EFy,; and
filxgy X1, ... Xa)—>y, then we write y=fxsx;...xn. We call the
integer n the assigned number to f and we denote it by ny.

An algebra A =(A4; F) is called an associative or, more precisely,
an F-associative ([1]) iff%:

(i) for any f, g EF and r €N » <ny the following identity
equality holds

Jaxgxy . Xn=fxgxy ... Xy @%r. .. Xn,

where n=ny+ny;

(i) if fi,e..s frs815-..,8 € F and n .o =ng + ...+ ng,
then the following identity equality holds:

fl'- -fk XpX1.-.Xn=g1...8s XoX1 ... Xn.

Let foo fi15..., fi be elements of F with the assigned numbers
o> Mys..., Nk respectively and let 4,...,7 be a sequence of integers such
that 0 <4, <iy4, 6, SHp+m+...4n,-, (v=1,2,..., k). Then the
following “continued product with the “length® 14— 1 +ny+ny +
+ faa + N,

nxoxl ses X = foxﬂ g xtl—lflxil P I{k 1f;-x;k cea Xy (l.l)

"‘Thi-s .work was supported by ,Republitka zaednica na nautnite dejnosti na
SR Makedonija“.

1 ,,iff“ stands for ,,if and only if«.

* N is the set of all positive integers.
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6 Naum Celakoski

can be defined in an obvious way. If 4 is an F-associative, then by (i)
and (ii) it follows that the continued product (1.1) does not depend on
the sequence #;,...,7% and on the sequence of operations fy, fi,. . ., ks
but it depends only on the sequence of elements xg, xy,...,%s & A.
Therefore, any two products of the same sequence of elements are
equal in an F-associative, i.e. the ‘“‘general associative law** holds in 4.
The converse is obviously true.

If f, g & Fn, then by (ii) it follows that f and g, as mappings,
are equal and so we may assume that in an F-associative, for any
positive integer n = 2, there exists at most one operation f & Fp. There-
fore it is convenient to consider the set

J—_{HFHEN, Fn+1 ;ﬁﬁ}

and call A=(4;F) a J-associative; we shall denote it by A(J) o1,
simply, by 4. :

If (J) is the additive subsemigroup of N( + ) generated by the set J,
then for any m& (J) it is possible to define in an obvious way an

(m+ 1)-ary operation on A and the new algebra (with the same carri-
er A) will also be an associative.

The associatives 4(J) and A((J)) are distinct as algebras, but the
distinction is not essential for the questions which will be considered
in this paper. For example, if Fni; %9 for some n &N and Fuy,= 0
for all i 5% », then the J-associative 4 with J= {n} is, in fact, an
n-semigroup which can be considered as a (J)-associative with
(Jy={n, 2n,...} if one takes the “extensions* of the given (» + 1)-ary
operation; in particular, any semigroup S is an {1}-associative or an
N-associative and also a J-associative for any non-empty subset J C N
Therefore, we may always consider J as the subsemigroup of N(+)
generated by the set of the assigned numbers to the operations of F.

The following result ([6], [9]) will be used in the next section of
this paper:

1.1. Lemma. If J is a subsemigroup of N(+)and d=G.C.D. (J)3.
then there exists v & N, such that

xxeJAx=2rex>2r Ad|x)-[

The set Jy ={r, r+d, r+ 2d,...} will be called the regular part of Je

3 TEoughout the paper d will mean “the greatest common divisor of th
numbers of J°,

555



On Semigroup Associatives 7

No confusion will result if we use the same symbol for all the
operations in an associative A(J). Thercfore, for any n & J, we shall
write [xyx;...xa] and sometimes x,x, ... xn (without any operation symbol)
instead of the product fx,x;...xn.

If By, By,...,Ba, B(n & J) are non-empty subsets of 4 and aE A4,
then the symbols ByBy...Bu, B,...BiaBi...Bs and B*! have the
usual meanings. The symbol &% will substitute the sequence a...a
(k elements a).

Further on we shall often assume that the identity operation on A
s defined, i.e. we shall put [x]=x for all x © A. (It is clear that 4
remains an associative after adjoining this unary operation to the opera-
tions of A(J).)

Let A4 be a J-associative. If B is a non-empty subset of 4
such that

ﬂejhbo,bl."-ubnEBj[bnb]_‘...'bn]EB,

then B is called a J-subassociative of the associative A. If J_N and B
is a subset of a semigroup S(-), such that

ﬂ':_—_.!/\ bo,bl,...,bneB :;bo'&l.-obﬂ&B,

then B is called a J-subassociative of the semigroup S. More generally,
let 4 be a J-associative and S a semigroup. A mapping £:4 > S is
said to be a semigroup homomorphism from A to S iff £ is a homomor-
phism of the J-assocciative 4 to the semigroup S (S is considered as a
J-associative), i.e. iff for any n € J and xp, xy,. .., xaE A4

5([3504'1 e Xn)) = i(xo) g (-*1)- .- E(xm).

If there exists at least one semigroup S and at least one semigroup
homomorphism from A(J) to S(-) which is a monomorphism, then A4 (J)
can be (isomorphically) embedded in S and it is called a semigroup
assoctative. Any n-semigroup is a semigroup associative ([3], [5]), but .
there exist associatives which are not semigroup associatives ([1], p. 11).

2. THE UNIVERSAL SEMIGROUP FOR A J-ASSOCIATIVE
A semigroup can be associated, in a natural manner, to any associative
([1], Theorem on p. 1l) and, more generally, to any algebra (4;F)

([4), 1.2). Namely, let 4 be a J-associative and let U= U, be the semi-
group which is freely generated by the set A4 (i.e. U consists of all finite
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8 Naum Celakoski

sequences a=(ap...,ax), k €N, a, € 4 and the operation is the usual
concatenation of sequences). We say that a=(a;...,ap) and b=
= (bys ...+ bg) (ay, b, € A) are strongly linked in A and we write a sl4 b
iff there exists an element e =/(eg ¢5,..., &) of U (¢, & A) and two se-
quences k..., kp € J, my,..., mg & J, such that

t+ 1=k1+...+kp+p=m1+‘.. +mq+q;
a = [eu. . .Ek‘l]; Qg = [81’14-1- . 8k1+,kz+l], veny Bp= [ . .8;], (2.1)

b[ = [80 ven e~m1]g bz = [eml-l-l- .iis Eml-pm2+1],. vy bq = [. iy 33].

Denote by l4 the transitive extension of s/(=sl4), i.e. put
alabe 3e,...,cs & U)aslesl...slesslb. (2.2)
(In that case we say that a and b are linked in A.)
It can be shown ([1], [2], [4] and [5]) that:
1°, | is a congruence on U,

2°, Al={d'|a=A} is a generating set for the factor semigroup U]l
and a J-subassociative of UJl.

3°. The canonical mapping A.a—a' is a semigroup homomorphism
from the J-associative A to the semigroup U|l, and its restriction
Ay A— Al is an epimorphism.

4°. The canonical homomorphism h:A — UJl has a wumiversal pro-
perty, t.e. for any semigroup homomorphism %.A —> S, there exists unique
homomorphism ¢ .U|l — S such that %= ¢h.

The next theorem ([1], Corollary on p. 13) will often be used in
this paper.

2.1. Theorem. A J-associative A is a semigroup associative iff the
restriction 1° of I on the set A is the equality relation on A [].

According to 4°, the mapping A:A - UJl is called a universal
semigroup homomorphism and the factor semigroup U/l a universal
semigroup for the associative 4. If U’ and U"” are two universal semi-
groups for an associative A, then it is easy to see that U’ =~ U".
So there exists a unique (up to isomorphism) iiniversal semigroup for a
J-associative A and it will be denoted by 4~ or, in some circumstances,
by A(J)".

If an associative A is a semigroup associative, then the universal
semigroup A~ will be called the free covering (semigroup) of A or the
maximal covering of A.

The next theorem gives a better insight into the structure of the
universal semigroup for a J-associative.
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On Semigroup Associatives 9

2.2. Theorem. Let A be a J-associative and d=G.C.D.(J).
If n & J, then

A" =4, U A L O A (2.3)
where Ax={(ay,....ax) |a, € A}. If p, g<n, then
Ap:“’l Aq #ﬂ(—':}d,q—"P- (2'4)

In particular, if p, g <d and p #£q, then Ay A= 0.

Proof. By the way of constructing the set A~ = U/l it follows
that A" =4, A4y ... AnlU... The equality (2.3) follows from
the fact that

Ansi T Ai (2.5)

for any n = J and i:1<i <n.

Let (ay,...>ap)sl(by, ... by), where ai, b = A, p, ¢ <n and d=
=G. C.D.(J). By (2.1),

k4 ... +kp+p=m+ ... +m+tgq

for some x,, mj&J and thus d|k, d|m; from which it follows that

d,(kl+. 0 ‘?‘kp>_(m1+... +MQ):Q'—P.
Hence A, (M Ay # 9 implies d| g—p.

Conversely, let d | g—p, i.e. g—p=rd. Then there exist (large enough)
integers m, n & J, such that m =n + rd = n + g¢—p (it is sufficient to take n
to be the first element of the regular part of the semigroup J; see
1.1), ie. m+p=n+gq. Let a be any element of A(J). Consider the
sequence e =(a,...,a) (with m+ p=mn+ ¢ elements a). The elements

a={(ay; ay...,ap)=(@ a,...,a),

\—.3‘.‘-].-—!

b=(bl, bgq-..,bq):(ﬂ”-u, ﬁ,...,ﬂ’)

e (] ——

are strongly linked (in A) since a,= [@™*1], ay=[a],...,ap= [a] and
b, = [a"1], b;=]a),...,b;=[a), which means that 4, A4,%8. This
proves (2.4).

Since d|g—p for any p, ¢ <d and p g, it follows that the first
d members A; in (2.3) are pairwise disjonit. []

The relationship between the universal semigroup for a J-asso-
ciative 4 and the universal semigroup for the J-associative A, (i.e. 4Y)
is considered in the next theorem.

2.3. Theorem. Let A be a J-associative, A~ the universal semigroup
for A and A,~ the universal semigroup for A;. Then A,  ~A4A .
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10 Naum Celakoski

Proof. Let A: A4 -~ A  be the universal semigroup homomorphism
A:A-> A, its restricion on A, ¢:4,—+> A the inclusion monomor-
phism and let £:4, > S be any semigroup homomorphism. We shall
show that there exists a (unique) homomorphism ¢:A  — § such that
@c=E, i.e that e:4, > A is the universal semigroup homomorphism
for A,. Putting 7(x) =&\ (x) (=¥(a!)), we obtain a mapping 1:4 —~ S
which is a semigroup homomorphism. Since A is the universal one for 4,
there exists a homomorphism @:A — S, such that A ==. Therefore

e (xt) = pedy (x) = @A (x) =n(x) =& («')

for any ¥'E A4, i.e. pe=E If $: 47— § is a homomorphism with the
propeity e — £, then

$ ()= (= () = (o) (') = E (') = () (") = (=),

which mecans that $=¢. Thus =:4, > 4 " is the universal semigroup
homomorphism for A;, i.e. 4 is a universal semigroup for A4;. Since
the universal semigroup for an associative is unique (up to isomorphism),
it follows that 4, ~A4 . [] '

3. SURJECTIVE ASSOCIATIVES

A J-associative A4 is called surjective iff every element of 4 can be
represented as a non-trivial J-product in A, i.e.

Va€ A@AneE N)(Aag ayy....an € A) a=[aga, ... an}. (3.1)

In short, A (J) is surjective iff

A= {A™|nEJ}. (3.2)
3.1. Theorem. A J-associative A is suriective iff
(YneE J) Al = A4. (3.3)

Proof. The part “if* is obvious. Now let A(J) be surjective.
Since every subsemigroup of N(+) is finitely generated ([6]), it
follows that J=/(m,...,nr) and so it suffices to show that A" =4
for every i = I, 2,...,n. Note first that by (3.2)

A=A4"1Y . o4m (3.4)

Let n be any fixed element of {n,...,ns} and let a € 4. By (3.4)
a & Anet! for some i € {1,...,k}, i.e. a can be represented as a product

a=[aya,...an])

The element @, can be represented in the same manner: a,=
= [agoagy - - - @on,] and so
GEA”“"-"?I-
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On Semigroup Associatives 11

Continuing this procedure one obtains

a e A+ v + .o 4+ 1

where vy, .. .0k = 0 and v+ ... +v > 0.

Note that the integer v+ ...+ ug increases for | in any further
step. Hence some of the integers vuy,...,ux will be just the chosen
element n (of {ny,...,n}) after finitely many steps. It can be assumed
that vy =n and so

aeArml+ Uglly 4 ... 4 up + 1 -
:-A-NA“(’*L'—'I) + ugng + ...+ upm + 1 C ArA = A1,

ie. AC A", Since A" C A too, it follows that 4"*1=A for any
n={ny...,me} [

Some properties of surjective associatives will be stated here. It is
clear that:

3.2. Proposition. Any homomorphic image of a surjective J-assocta~
tive is a surjective J-associative. ||

-

3.3. Proposition. The direct product of any non-empty family of
surjective J-associatives is a surjective J-associative.

Proof. Let {A;|i € I} be any (non-empty) family of surjective J-asso-
ciatives and let P be its direct product. If (ai) is any element of P,
then every component a can be represented as a J-product in A, i.€.

A n€EJ) ai= laioai . - - Gin,)
for some a;, & 4. By Theorem 3.1, m=nEJ can be taken for all
i1l and so
(@) =([gio an) . . . ain)) = [(aio) (ar1) . . - (@in)]

which means that the J-associative P is surjective. []

The next proposition is a direct generalisation of a result for semi-
groups ([8], p. 67, Ex. 3).

3.4, Proposition. A nontrivial J-associative A is surjective iff no
nontrivial homomorphic image of A is a zero J-associative.

Proof. Let A be a nontrivial surjective J-associative and let
A'=o(A) be a nontrivial homomorphic image of A (i.e. 4" has at least
two distinct elements). If A’ were a zero associative, then

30’ EA) (VnET) (V) ..., x,EA) [x,... ¥ = 0.
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12 Naum Celakoski

Let o’ £ 0. Since A is surjective, it follows that for some »n & .J and
dgy .. .san & A would be

a'=g(a)=9([ap...an))=[p(a)...2(an)] =0
which contradicts the assumption o' %£0’. Therefore A’ is not a zero
associative.

Conversely, let no nontrivial homomorphic image of a nontrivial
J-associative 4 be a zero J-associative. Put A* — ({4 |n&J}. If A
were not surjective, then we would have A* £ A4, ie. ANA¥*=R #£0.
Define J-operations [], on the set 4= R . {0}, where o & A4, by

[xuxl A -\’n]l =0

for all n&J and xp,...,xa & B, then B becomes a nontrivial J-asso-
ciative. Define a mapping ¢.4 - B by
o(x)=0 if x € 4%, ¢(x)=x if x E R.
If xgp.. .xxn = A(n € J), then z=[xy...xa] & A* and
?([xp. .- xn)) = (2)=0=[9 (x0) - . . ¢ (xu)]1s

i.e. @ is a homomorphism and B (J) is a homomorphic image of A (J).
Thus, if A* = A4, then there exists a nontrivial homomorphic image of A
which is a zero J-associative.

Hence, A(J) is surjective. []

Let A be a J-associative and K a subsemigroup of N (+ ) which
contains the subsemigroup J. If it is possible to define a (2 + 1)-operation
on A for any 2 & K\J in a such way that A4, together with the opera-

tions of the given J-associative, becomes a K-associative, then A4 (J) is said
to be K-reducible ([1]).

3.5. Theorem. If A(J) is surjective, then it is reducible to a
d-semigroup A(d), where d = G.C.D.(J).

Proof. Define a (d+ 1)-operation on 4 by
[xox: . .. xa) = [xox1 . . . Xa-1¥0¥1 - - - ¥r)s (3.5)

where x¢=[y9...¥] and r is any (ex. the smallest) element of Jy
(Lemma 1.1). (Instead of xg,any x; (i =0,1,...,d—1) can be substituted
in (3.5) by some r-product.) If xa=[2¢2;...2-] too, then putting
xg = [ty . . . ur] one obtains

(K- -+ Xa130 - e = o - - Ury « . Xa1 30 - - 3] =
=up.. . tp2y... xa-1x%a]=[s0g.. thXy... X4 %p... %)=
= [xgX1+ .. %2120 . - 2>
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On Semigroup Associatives 13

which means that the (d+ |)-operation on A with (3.5 is well-de-
fined. It is easy to show that this (d -+ l)-operation is associative, i.e.

[[x1...xayl'xas . -« x0d]’ = [x1[%s . . .x@yxa:1) Xdeg. .. Xpa) =
= L= [x]_ P 1 [yxd+l R xgd.]‘]'.

(Namely, using the surjectivity of A4(J), we can represent y and Xeq by
some r-products in A(J), say [yo...y:] and [uy...u,] respectively, and
replacing them in the above expressions, we shall obtain some products
in A(J), where the “brackets can be removed®.)

We note that any (sd+ l)-operation on A (s & N) which is an
extension of the (44 I)-operation can be represented by

[y« %edl = [96. ... W%i s - - Xaa)s (3.6)

where xp=[y5...31).

Let [xy...xn] be any product in A(J) end let xg=[y...»].
Since n= kd, by (3.6) it follows that

[xo%) ... xn) = [¥o ... ¥r%1 .. . Xka] = [X0x; . .. xkal’

which means that any J-operation on A is some extension of the
(d + 1)-operation.

Therefore A4 (J) is K-reducible, where K=(d) 2 J, i.e. it is redu-
cible to a d-semigroup. []

3.6. Theorem,. [f a J-asscoiative A is surjective, then A is a semi~
group associative,

Proof. Let A(J) be surjective and let it be reduced to a d-semi-
group A(d). By 3.5, A(J) is a J-subassociative of A4(d) which can be
considered as a K-associative 4 (K), K= (d). If a, 6 € A are linked in
A(]), i.e. at=bl, then they are linked in A4 (K) too, i.e. a =bl, where
I’ is the relation of linking in A(K). Since 4 (K) is a semigroup
associative, it follows by 2.1 that a=5b. Thus a, b€ A and a' =¥
implies a=»& and so A(J) is a semigroup associative. ||

(We note that 3.5 is proved in [I] with an additional assumption
— that A4 1s a semigroup associative, but this assumption can be
omitted as 3.6 shows. Also, in contrast with [1], we define the
(d + 1)-operation ,,in one step*. On the other hand, using the mentioned
result of [1], the (d+ 1)-operation []" can be found immediately.)

As a consequence of 2.2 and 2.3 we obtain the following.

3.6. Proposition. If A(J) s a surjective J-associative, d = G.C. D.(J)
and A~ is the umversal semigroup for A(J), then:
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14 Naum Celakoski

a) A7 =AU ... U Aa, where AiN A;=0 for i, j <d,i#*j and
di={(ap...,a)|a, € A}.
b) A, is a d-subsemigroup of the semigroup A~ and A is the free
covering of A,(d).
) AU =A@
Proof. a) Let (ay,...,aan) € Aay. Since
(ags...s aan) =(a) ... (aas1)' =[ay ... @aan Y € 4y,

it follows that Az, C A4, and moreover Aa. C Ai (1<i <d). Hence
a) follows by 2.2.

b) Let al,...,ala = Ay Ifag=1[by...by] and [by...bra;...ad) =0
where » is as in 1.1, then

G'lg...a!ﬁ:[bu...br]!ﬂ]...ard.-.zb‘q.-.&‘ra‘{.-.a“dzﬂfefll,

ie. A, is a d-subsemigroup of 4. By 23, A(J) >~ 4,(J)" and this
implies that A~ is the free covering for A4,(d) too.

c) Since A(J)" is the free covering of 4 (/), it follows by b) that
A(J) "> A@)".

Note that the epimorphism 4;:4 — 4, (see 3° in section 2) in this
case is an isomorphism, i.e. for any surjective associative 4 (J), A~4,. []

Note that the assumption of surjectivity in a) can not be omitted.
For example, the J-associative 4 = {a, b, ¢} with J = {2,3} and [x,x;xx3] = a
if some xi ¢, [cccc]l =& and [xpx;x5] = a is not surjective. It is clear
that d=G.C.D.(J)=1, A= =A4,U 4, and A,# A" (since c is not a
J-product and (¢, ¢) € U4 is not linked with any element of U4 which
is not equal to (¢, c), and so (¢, &)t & 4;) Since (a) and (a,c) of Uy are
linked via the sequence e = (a, a,a,¢) (namely, a = [aaac] and a = [aqa],
¢= [¢] whkich means that (a)/(a,c)), it follows that A, A, #0.

4. SOME PROPERTIES OF SEMIGROUP ASSOCIATIVES

The following “local theorem for semigroup associatives holds

4.1. Proposition. If every finitely generated J-subassociative of a
J-associative A is a semigroup associative, then A is a semigroup asso-
clative.

Proof. If A were not a semigroup associative, then by 2.1 there
exist at least two distinct elements a, b & A, such that (a)l(b), i.e.
(a)sleysl...slersl(b) for some e & Uas €i=(cis...>Cik,). By (2.1) in the
definition of s/ every ¢;,, is a product of elements of 4 and the set E
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of all these elements is finite. The J-subassociative B which is generated
by the set E UJ {a, b} is finitely generated and is not a semigroup asso-
ciative. This proves the proposition. []

4.2. Proposition. If B=1{B;|i & I} is a chain of semigroup J-subasso-
ciatives of a J-associative A, then its union is a semigroup J-subassociative too

Proof. Clearly, M= U{B;|i & I} is a J-subassociative of A. Sup-
pose that M is not a semigroup associative. Then by 2.1 there exist at
least two distinct elements b,, b, & M which are linked in M, (by) Iar (by),
i.e. (by)sle; sy ... shacyshy(by) for some ¢ys. ... EUs, €= (Csrs. - > Giky)s
which components ¢ju; are in M. Since A is a chain, there exists a mem-
ber Bs of ‘B such that all the elements cju;; by, b, belong to B;. Thus
(b)) and (b;) are linked in B, which (by 2.1 and b, 54b;) is a con-
tradiction.

Therefore M is a semigroup associative. [ ]

4.3. Corollary. Every semigroup J-subassociative of a J-associative
A is contained in a maximal J-subassociative of A (where the set of all
J-subassociatives of A is ordered by inclusion). []

Let A be the free J-associative which is generated by some set X
(i.e. A consists of all J-sequences in X, where the J-operations are all
admissible concatenations of J-sequences). This means that any element
of A can be uniquely represented as a sequence (xg,xy,.-.,xn), where
n&J and xp,...,xn—X. Hence, A is a J-subassociative of the free
semigroup Uy which is freely generated by the set X. Moreover,
A = U ¥ Thus:

4.4. Proposition. /f A is a free J-associative, then A is a semi-
group associative. | |

4.5, Corollary. Every J-associative is a homomorphic image of a
semigroup J-associative. ||

5. A SYSTEM OF AXIOMS FOR SEMIGROUP ASSOCIATIVES

As we deduced in the first section, the identities of the form
I'I'.‘h.'“xl.. .xnzﬂ”xuxl. .o Xy (S.l)

where M’ and M’ are continued products, hold in any J-associative A.
If A is a J-associative which is freely generated by two elements, then
it is clear that no other identities besides (5.1) hold in A. Thus no
other identities besides (5.1) hold in the class <) of semigroup J-associa-
tives. It is easy to show that <), for a fixed J, is hereditary and admits
direct products. Since there exist associatives which are not semigroup
associatives ([1], p. 11), it follows by 4.5 that %) does not admit homo-
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morphic images (unless J= (), for some nEN). Thus, by the Birkhof
theorem ([7], p. 337), if J=(m), S is not a variety.

However, <) is a quasivariety ([7], Corollary 5 on p. 274). This
implies that the conditions for embedding of an associative into a semi-
group can be expressed by quasiidentities i.e. by formulac of the form

(Vxy...oxn) (i=&1 &. .. &fos=gs = for1 = gs41)> (5.1)

where fi, g are terms with a signature F of the variables xy, xs,..., %y,

We are going to state a system of axioms for the semigroup asso-
ciatives, i.e. to find effectively those quasiidentities, using the theorem
2.1. The definition of the relation / (section 2) will be repeated in detail,

Let A be a semigrcup J-associative and let (x)/4(y), where
x,y & A. Then there exist elements w,,...,u; of U= U4 such that

() slawysly...slaugsls (y).

Let wi= (... %k,), t=1,...,5. Then (x)slqw; implies that there
exist integers n', ny,...,n, of J and an element ay = (ago, @15 - . . > @on’)
of U (asi € A), such that

n'+1 =”ll+--'+“l-"l+k1» x= [app agy .. . Gon’']

Uy = [ﬂoo e aouH], Uyp = [aonud-]_ v a"mu*'“w*l]!
v ,ultl = [- i am'].

Further, w;s/4u, means that there exist integers »n'y,...,7 %,
fg15. ..Mk, Of J and a sequence a;= (ayg, @y, ..., a¢,) of U such that

”'“'+.-.+ﬂ’lkl+k!=n21+...+nsx2+k2=£1—f— l-,

L
Uy =ayp ... 80 g0 Uk = .02 Aty
Ugy = Ay - - - Ayngy 5+« > UBky = + v A1y etc.

Continuing in that way, ussl4 (y) implies that there exist integers
"oy Wags...on'sk, ©J, n & J and as=(dso, as1,...>asm) € U, such that
sy 4.+ n'sk, + kewmn 41,
te) = [@s0ls . . . a.m'.,]; ceey Uk, = - -ﬂm],
y= [ﬂao Asp o v o ﬁm].
Since the restriction of I4 on A is the equality on A4, it follows
by 2.1 that x=y.
The above procedure can be effected by a scheme, using only the
indices. Namely, let n', n';w, n',-u‘., n(:’: | R SO I TY ) 1o R k.‘) be
integers of J such that:
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On Semigroup Associatives 17

ﬂ'+ 1 =ny +...+n];!+k1
ﬂju—'—... +ﬂ'u1 +k1=n21+...+n2}¢2+k2(=f1+ l),
W+ ..t nugtRo=ng+...+npy + k3(=12241), (5.2

ﬂ’31+---+n'sk,+ks:n+ 1.

The integers n;,,, n';,, taken pairwise in a convenient way, can be arrang-
ed in the following scheme:

1

(0, n") j ("11’ n'yy) ! (na1, ”’al) cae i (ns1, ﬂ’sﬂ (n, 0)

i |
(nyes n'y0) | (nags 1'39) 1 S o (782, 7s3)

| ] s } (5.3)

|
|

| (Magygs ' 1ky) ’(nn,: 1" 2k,)

(’ki‘:,a ﬂpsk,)

Every scheme of this form which is constructed by integers of J
and satisfies the conditions (5.2) will be called a J-configuration. The
following system of equalities (further on referred to as equalities (SE))
can be assigned to the J-configuration (5.3):

x= [xm]xm e xf_m’],
[xooxm B xouu] = [xlﬂxll vee xm'n],

a— ’ '’ r
[xonuq. e xouna-ulsﬂ] — [xln 1141+ ¢+ Xln gqtn lgﬂ]s

[coxon]l=[..00] (4 +1=n'y+...+ 7' +&);
[x10%11 - - - X1ng, ) = [x20%91 . . --"‘2!!'31]’

[xhlzl’l his xl..ammﬂ] == [x?-ﬂ'gj,*'l b x;v,,'s,m’“ﬂ],
["'x|l‘1]=["'lel] (I$+ 1=u'21+- . -+"‘2ﬁn+k2);
[¥e-150 Xs-11 - - - Xoom,; ][ = [Xs0Xsy . . . %o, ]

2 TIpuioau
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18 Naum Celakoski

’
[xs-p Mg 4] v xs-pn,,ﬂ] —— [xau',, SR xm',,m ‘,+1]:

. . . . . . . . . . . . . .

[. v o Xg=13 “'1] = [. v x;u] (ﬂ + 1= n’gl PP e ﬂfg‘-u + k,),
[xs0%s1 - . . Xan) = 3.

Thus, any system of equalities of the form (SE) which is ob-
tained by some J-configuratiop, gives an axiom:

(SE)=x=y,

which we call a J-configuration theorem. By theorem 2.1 it follows that:

5.1. Theorem. A J-associative A is a semigroup associative iff
every configuration theorem holds in A. []
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PE3UME
3A TIONYTPVIIHUTE ACOITMJATHBH

Haysm I[ETAKOCKH

Epua anre6pa A = A (F), co Hocuven A u damwmja F og dunuTapHM omepa-
mu mefy KoM Hema HYJapHH H yHApHH, a uma Gapem ejua n-apHa (n > 2), ce BHKa
acouujaiaue ([1]) win, nonpetmsso, F-acoyujaiiue akko! 8o A BaKM ,,OMITHOT acouMja-
TuBeH saxkoH*. Hamecro thammnmjara F ce pasrieyBa MHOMKECTBOTO

J=n—1|neEN, Fat o},

Kajge ro Fn € MHOMKECTBOTO H-apHH omepaumy of F, na‘ BO Taa cMHCJIa C¢ BeJ
J-acouujaiiue namecto F-acommjarns. Ilpuroa, Hamecto J-acoumjatuBor A Moke aa ce
pasrienysa (Jy-acommjarusor A, kage wrro (J) e normonyrpynara ox N (+), renepupana

1 ,,8KkK0'’ CTOM HAMECTO ,,8KO H CAMO AK0'',
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ox J. Enen J-acoumjatHB ce BMKA doayzpyileH Gcouujawiug aKKO TOj MOYKE qa Ce CMECTH
BO Hexoja momyrpyma S, T.e. akko A e J-moxaconmjaTHB off Hekoja nonyrpyma S. (Ila
sabeneyume JIeKa CEKOja MOJYIPYNA MOXKE Ja ce cmeTa 3a J-acouMjaTHE 3a Koe OHIIO
HenmpasHo mogmHo)kectBo J og N.)

Hexa U = U, ¢ monyrpynata IITO e cJI0GOJHO FeHepmMpaHa of Hocauor A Hg

J-ecompjatusor A, T.e. U={(a).....ap)]k EN, a, € A}, a onepaumjata e obmuHO
HaJ0Bp3yBame Ha uu3n. Heka a = (a5,...,ap), b= (by,....8), ay, by & A. Hedunn-
pame penaumja sI Bo U co: aslb axko mocrojar ¢, €'y,....€'p, €'1,....¢”c € U n

cioyenn npouasoxu 1y, [1”j¢; Bo A, Taken mro
c=c...ep=0e"1...¢"%, ar =11y ', by=N"; ¢;”.

Ce moKa)KyBa /IeKa TPAH3UTHBHOTO NPOUIMpYBame ! Ha penammjara s/ € KOHTPYeH-
umja Ha U, A' = {a' | a € A} e reneparopHO MHOYKECTBO 32 thaxrop-nonyrpynara U,
KaHORHYHOTO NpeC/HKyBame A :a — @' ¢ xomomopdisam on J-acoumjatueor A BO mony-
rpynara U/l u 10 MMa YHHBED3AJIHOTO CBOJCTBO, T.€. 3a KOj Guio xomomopdusam £ on
J-aconmjarueor A BO Hekoja monyrpyna S mocTon eguHCTBeH XoMomopdusam ¢k U/l — S,
TakoB o £ = oA, ITopamn oBa cBojcTBO, dhaxrop-nonyrpynara Ufl ce Buxa YHusepsan-
Ha #oayepyiia sa acoumjaTnBor A W, GHaejku Taa e eguHcTBeHaTta ([0 uzomopchuzam),
ce osHauyBa c0 A” wm co A(J)”. Bo ciyuaj wora J-acommjatueor e monyrpymes,
A ce BMKa caobogna ioxpuska Ha A.

Hexka A e J-acommiatus u d = msg (J). Ce moxekyBa jeka: HA YHHBEp3aiHaTa
nonyrpyna A~ mowe [ga i1 ce gage cienuasa gopma:

AT =4, U A U...U An.

kage wro n € J u Ay = {(ay,....a)' | ay, € A}; axo p, g n, Toram (Ap N A,
#@<>d|qg—p); ako A, e yHHBepsanHara NOJYrpyna 3a J-acorujaTHBoT 4, (=4H
Toram A; T ~A".

Epen J-acoumjatue A ce BHKA cypjexiliuser acouujaiine aKKo CEKOj eIeMeHT
op A moxe jga ce INpeTcTaBH KaKo HCTPHBHjalCH T-mpomasog po A, T.e. aixo
A=) {A"1 | ne J}. Ce noxaxysa gexa A (J) e cypjeKTHBEH aiko, 3a cexoj n & J,
An+1l = A. Knacara cypjekTHBHH J-acOIMjaTHBH JONYINTa XOMOMOP(HN CIMKH M {HPEK-
HH NpOM3BOAM, HO He e HacneacseHa. Axo A (J) e cypjekTnBeH, Toram Ha A moxke ma
ce marpagu d-nonyrpyna, kage mro d = n3n(J) u cexoja J-omepanmja mpercraByBa
npommpyBaibe Ha jgedummpanara (d + 1)-onepaumja; mpmroa: A4 T =A; ... U Ad,
Kate mro Ai\ Ay=@ sa i, j=d, i#j u A, e d-normonyrpyna ox nmoayrpynara A",
KojewTo e crnobogHa noxpuBka Ha d-mosmyrpynmara A;. Tyka ce JOKaKYBa M T[JIABHHOT
PE3YJTaT 34 CYPjEKTHBHUTE ACOUMjATHBH: CEKOj CYPjeKTHBCH ACOLMJATHB € HOAYrpyleH
ACOLMJATHB.

Haramy ce mamecyBaaT HEKOJIKY PesyJITATH 3a NOJYTpynHuTe aconmjaruBu. MmeHo,
Cce JIOKKYBA [eKa: aKO CCKO] KOHeYHOreHepupaH J-MOfacolMjaTHB of ejeH J-acomm-
jatme A e monyrpynen aconmjaTue, Toraml u A e MOJYrpymeH; CeK)j HOMYIpyMeH
J-nogacoumjatis ox eaer J-acoumjatnB A ce CoApuUI BO HEKO] MaKCHMATEH HOJYTpY-
nex J-nogaconujaruB Ha A; cexoj cI0GOMEH acoUMjaTHB € MOJIYTPYIeH; cekoj J-acouu-
jaTnB e XomomopcdHa CIMKA HA MOJYTpyneH J-acolMjaTs.

Ha xpajor ce pobuea momeceH cucTeéM aKCHOMM 3a MOJYTPYIHHTE ACOLM]aTHBH;
HMEHO, Ce MOoKarKyBa JleKa KIacaTa Ha MOJYrpymHHMTe J-acOUMjaTHBH € KBasHBaapHeTeT,
Opy INTO ce [JobHBa M CHCTEMOT KBasSHHMIEHTHTETH co Koj € jgedHHMpan Toj KBa-
3NBapHeTer.
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