ON A CLASS OF n-GROUPOIDS

Biljana Janeva*, Valentina Miovska**, Vesna Celakoska-Jordanova**

*Институт за информатика, Природно-математички факултет, Скопје, Македонија, e-mail: biljana@pmf.ukim.edu.mk **Институт за математика, Природно-математички факултет, Скопје, Македонија

Abstract: Using the notion of vector valued semigroups, i.e (m+k, m)-semigroups ([1], [2]), a special class of n-groupoids, named "m|k-semigroups" is introduced and some examples of m|k-semigroups are given. It is shown that the general associative law (GAL) for m|k-semigroups holds, and some consequences of GAL are obtained. A description of the universal semigroup of an m|k-semigroup is given. The notion of m|k-group is also introduced and some properties are shown.

1. Introduction

Investigation of vector valued semigroups and groups, has led us to a class of m|k-semigroups.

First, we will introduce some notations which will be used further on:

- 1) The elements of Q^s , where Q^s denotes the s-th Cartesian power of Q, will be denoted by x_1^s .
- 2) The symbol x_i^j will denote the sequence $x_i x_{i+1} ... x_j$ when $i \le j$, and the empty sequence when $i \ge j$.
 - 3) If $x_1 = x_2 = ... = x_s = x$ ($x_i \in Q$), then x_1^s is denoted by the symbol x.

If $n, m \in \mathbb{N}$, where \mathbb{N} is the set of positive integers, then an (n, m)-operation on a nonempty set \mathbb{Q} is any mapping $f: \mathbb{Q}^n \to \mathbb{Q}^m$. In this case, we call the pair $\mathbb{Q} = (\mathbb{Q}; f)$ an (n, m)-groupoid.

Let f be an (n, m)-operation on a set Q. We can associate to f a sequence of m n-ary operations f_1, f_2, \ldots, f_m $(f_i : Q^n \to Q, 1 \le i \le m)$, by putting

$$f_i(a_1, a_2, ..., a_n) = b_i \iff f(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_m)$$
 for every $1 \le i \le m$.

Then, we call f_i the *i*-th component operation of f and we write:

$$f = (f_1, f_2, \dots, f_m)$$
 (2)

Conversely, if f_1, f_2, \dots, f_m is a sequence of m n—ary operations on the set Q, then there is a unique (n, m)—operation f on Q, such that (2) holds.

If the equality (2) is true, we say that $cp\mathbf{Q} = (Q; f_1, f_2, ..., f_m)$ is the component algebra of \mathbf{Q} and $(Q; f_i)$ is the *i-th* component *n*-groupoid of \mathbf{Q} .

Further on we will assume that $Q \neq \emptyset$ and that n, m are positive integers such that $n - m = k \ge 1$. An (n, m)-groupoid Q = (Q; f) is called an (n, m)-semigroup iff the following equality:

$$f(f(x_1^n)x_{n+1}^{n+k}) = f(x_1^i f(x_{i+1}^{i+n})x_{i+n+1}^{n+k})$$
(3)

is an identity in (Q; f), for every $0 \le i \le k$.

Using the component algebra, (3) is equivalent to

$$f_{i}(f_{1}(x_{1}^{n})...f_{m}(x_{1}^{n})x_{n+1}^{n+k}) = f_{i}(x_{1}^{i}f_{1}(x_{i+1}^{i+n})...f_{m}(x_{i+1}^{i+n})x_{i+n+1}^{n+k})$$
(3')

for every $0 \le i \le k$, $1 \le j \le m$.

The object of our interest is the case where component operations are mutually equal $(f_1 = f_2 = ... = f_m = f)$, i.e a vector valued groupoid $\mathbf{Q} = (Q; f^*)$, where

$$f^* = (\underbrace{f, f, ..., f}_{m})$$

Definition. Let $f: Q'' \to Q$, $(f: Q^{m+k} \to Q)$. Then (Q; f) is an *n*-groupoid (m+k-groupoid) and we say that (Q; f) is an m|k-groupoid.

Definition. Let $f: Q^{m+k} \to Q$ be such that:

$$f((f(x_1^{m+k}))^m x_{m+k+1}^{m+2k}) = f(x_1^i (f(x_{i+1}^{i+m+k}))^m x_{i+m+k+1}^{m+2k})$$
(4)

for any i, $0 \le i \le k$. Then, we say that (Q; f) is an m|k-semigroup.

We denote by $V_{m|k}$ the class of m|k-semigroups.

Remark. Obviously, if $(Q; f) \in V_{m|k}$ then $(Q; f^*)$ is an (n, m)-semigroup, where $f^* = (\underbrace{f, f, ..., f})$. The convers is not true. Namely, let Q = N and $g: N^5 \to N^3$

be defined by $g(x_1^5) = (1, 1, x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5)$. Then, (N; g) is a (5,3)-semigroup. If $f = g_3$, then it is easy to check that (N; f) is not a 3|2-semigroup.

Examples of m|k-semigroups:

Example 1. Let $Q \neq \emptyset$. Fix an element $a \in Q$ and put $f(x_1^{m+k}) = a$, for every $x_1^{m+k} \in Q^{m+k}$. Then (Q; f) is an m|k-semigroup, called a *constant* m|k - *semigroup* on Q

Example 2. Let m=2, k=2. Define a 2|2-operation f on Q by $f(x_1^4) = \frac{1}{2}(x_1 + x_2 + x_3 + x_4)$, for every $x_1^4 \in Q^4$, where Q is the set of rational numbers. Then (Q; f) is a 2|2-semigroup.

Example 3. Let Q be the set of rational numbers and define an m|k-operation f on Q by $f(x_1^{m+k}) = \frac{1}{m}(x_1 + x_2 + ... + x_{m+k})$, for every $x_1^{m+k} \in Q^{m+k}$. Then (Q; f) is an m|k-semigroup.

2. The general associative law (GAL)

We will show here that the "general associative law" is also true for $m \mid k$ -semigroups. First we will introduce the notion of polynomial operation.

Let $(Q; f) \in V_{m|k}$. For $s \ge 1$, we define an operation $f^s: Q^{m+sk} \to Q$, inductively, in the following way:

1)
$$f^{1}(x_{1}^{m+1k}) = f(x_{1}^{m+k})$$

2) $f^{s+1}(x_{1}^{m+(s+1)k}) = f((f^{s}(x_{1}^{m+sk}))^{m}x_{m+sk+1}^{m+(s+1)k})$ (5)

for every $x_1^{m+k} \in Q^{m+k}$ and $x_1^{m+(s+1)k} \in Q^{m+(s+1)k}$.

By induction on both r and s (as it is done in [2] for (n,m)—semigroups) we obtain the following statement:

Theorem. (GAL) If $(Q; f) \in V_{m|k}$, and $r, s \ge 1$, $x_1^{m+(r+s)k} \in Q^{m+(r+s)k}$, then

$$f^{r+s}(x_1^{m+(r+s)k}) = f^r(x_1^i(f^s(x_{i+1}^{i+m+sk}))^m x_{i+m+sk+1}^{m+(r+s)k})$$
(6)

for every $0 \le i \le rk$.

3. Some consequences of GAL

As a direct consequence of GAL we have the following proposition:

Proposition 3.1 If $(Q; f) \in V_{m|k}$, then $(Q; f^s) \in V_{m|sk}$, for every $s \ge 1$.

Proof. Let (Q; f) be an $m \mid k$ -semigroup. Then,

$$f^{s}((f^{s}(x_{1}^{m+sk}))^{m}x_{m+sk+1}^{m+2sk}) = f^{2s}(x_{1}^{m+2sk}).$$

By using GAL, we obtain $f^{2s}(x_1^{m+2sk}) = f^s(x_1^i(f^s(x_{i+1}^{i+m+sk}))^m x_{i+m+sk+1}^{m+2sk})$, where $0 \le i \le sk$. This, implies that $(Q; f^s)$ is an $m \mid sk$ —semigroup, for every $s \ge 1$.

The notion of a commutative $m \mid k$ -groupoid can also be introduced in an obvious way.

Definition. An $m \mid k$ -groupoid (Q; f) is *commutative* iff for every permutation $\sigma \in S_{m+k}$ the following identity holds:

$$f(x_1^{m+k}) = f(\sigma(x_1^{m+k})) \tag{7}$$

where $\sigma(x_1^{m+k}) = x_{\sigma(1)}x_{\sigma(2)}...x_{\sigma(m+k)}$.

Using GAL and the usual induction, we obtain:

Proposition 3.2 If (Q; f) is a commutative $m \mid k$ -semigroup, then $(Q; f^s)$ is a commutative $m \mid sk$ -semigroup, for every $s \ge 1$.

Definition. An m k-groupoid (Q; f) is cancellative iff every implication

$$f(a_1^{i} \overset{m}{x} a_{i+1}^{k}) = f(a_1^{i} \overset{m}{y} a_{i+1}^{k}) \Rightarrow x = y$$
(8)

holds in (Q; f), for every $0 \le i \le k$.

Now we give the following characterization for the cancellative $m \mid k$ -semigroups. The proof is by analogy to the proof of Theorem 5.7. in [2].

Proposition 3.3 If $(Q; f) \in V_{m|k}$, then the following conditions are equivalent:

- (i) (Q; f) is a cancellative $m \mid k$ -semigroup;
- (ii) (Q; f^s) is a cancellative m sk-semigroup, for every $s \ge 1$;
- (iii) (Q; f^s) is a cancellative $m \mid sk$ -semigroup, for some $s \ge 1$;
- (iv) (Q; f) satisfies the following implication:

$$[f(a_1^k \overset{m}{x}) = f(a_1^k \overset{m}{y}) \vee f(\overset{m}{x}b_1^k) = f(\overset{m}{y}b_1^k)] \Rightarrow x = y$$
 (9)

(v) There are $i, s \ge 1, i \in N_{sk-1}, sk \ge 2$ such that the following implication in $(Q; f^s)$ is true:

$$f^{s}(a_{1}^{i} \overset{m}{x} a_{i+1}^{sk}) = f^{s}(a_{1}^{i} \overset{m}{y} a_{i+1}^{sk}) \Rightarrow x = y$$
 (10)

Remark. An (n,m)-semigroup **Q** is said to be cancellative (see [2]) if

$$f(a_1^i x_1^m a_{i+1}^k) = f(a_1^i y_1^m a_{i+1}^k) \implies x_i = y_i, i = 1,..., m$$

for any i, $0 \le i \le k$.

This definition can be used as a definition for cancellative $m \mid k$ —semigroup, but the one given in this paper is not convenient in defining, for example, $m \mid k$ —groups.

Definition. An m k-semigroup (Q; f) is called an m k-group, iff

$$(\forall a_1^k Q^k, b \in Q) (\exists x, y \in Q) f(a_1^k x^m) = b = f(y^m a_1^k).$$
 (11)

Example. Let $f: \mathbb{Q}^{m+k} \to \mathbb{Q}$ be defined by $f(x_1^{m+k}) = \frac{1}{m}(x_1 + x_2 + ... + x_{m+k})$,

for every $x_1^{m+k} \in \mathbb{Q}^{m+k}$, where \mathbb{Q} is the set of rational numbers. Then $(\mathbb{Q}; f)$ is an m|k-group.

The proposition bellow gives a characterization of $m \mid k$ -groups ([2]).

Proposition 3.4 If $(Q; f) \in V_{m|k}$, then the following conditions are equivalent:

- (i) (O; f) is an $m \not k$ -group;
- (ii) (Q; f^s) is an $m \mid sk$ -group, for every $s \ge 1$;
- (iii) (Q; f^s) is an $m \mid sk$ —group, for some $s \ge 1$;
- (iv) There is an $s \ge 1$, satisfying $sk \ge 2$ and $i \in N_{sk-1}$, such that the equation:

$$f^{s}(a_{1}^{i} \overset{m}{x} a_{i+m+1}^{m+sk}) = b$$
 (12)

is solvable for given $a_1^i \in Q^i$, $a_{i+m+1}^{m+sk} \in Q^{sk-i}$, $b \in Q$;

- (v) There is an $s \ge 1$, such that $sk \ge 2$ and for each $i \in N_{sk-1}$, the equation (12) is solvable;
- (vi) For each $s \ge 1$, satisfying $sk \ge 2$, there is an $i \in N_{sk-1}$, such that the equation (12) is solvable;

(vii) For each $s \ge 1$, satisfying $sk \ge 2$, and each $i \in N_{sk-1}$, the equation (12) is solvable.

4. Universal semigroup of an m k - semigroup

In this section we will consider the question for embedding a given $m \mid k$ -semigroup (Q; f) into a semigroup, and, we will give a description of the universal semigroup of an $m \mid k$ -semigroup (Q; f).

Let (Q; f) be an $m \mid k$ -semigroup and let $\Lambda = \{(a_1^{m+k}, b^m) \mid f(a_1^{m+k}) = b\}$. We denote by Q^+ the free semigroup with a basis Q. If \approx is the least congruence on the semigroup Q^+ containing Λ , then quotient groupoid Q^+/\approx with the operation \cdot defined by:

$$a_1^s \cdot a_{s+1}^t = \begin{cases} a_1^t & , & t < m+k \\ (f(a_1^{m+k}))^m \cdot a_{m+k+1}^t & , & t \ge m+k \end{cases}$$
 (13)

for every $a_v \in \mathbb{Q}$, is a semigroup.

We denote by Q^ the semigroup Q^+/\approx , $(Q^- = Q^+/\approx)$ and we write $\mathbf{Q}^- = (Q^-, \cdot)$. Then the following propositions hold:

1.
$$f(a_1^{m+k}) = b$$
 in $\mathbf{Q} \implies a_1 \cdot a_2 \cdot \dots \cdot a_{m+k} = b^m$ in \mathbf{Q}^{\wedge} .
2. $a, b \in \mathbf{Q}$, $a \approx b \implies a = b$.

Let $\Delta = \{(b, b) \mid (\exists a_1, \dots, a_{m+k} \in Q) \mid a_1 \cdot a_2 \cdot \dots \cdot a_{m+k} = b \}$, and let \sim be the least congruence on Q^{\wedge} containing Δ . Then, Q^{\wedge}/\sim with the operation * defined by:

$$a_1^s * a_{s+1}^t = \begin{cases} a_1^t &, t < m+k \\ f(a_1^{m+k}) * a_{m+k+1}^t &, t \ge m+k \end{cases}$$
 (14)

for every $a_v \in \mathbb{Q}$, is a semigroup.

Let $Q^{\Delta} = Q^{\wedge}/_{\sim}$, and $Q^{\Delta} = (Q^{\Delta}; *)$. Then we have the following:

1'
$$f(a_1^{m+k}) = b$$
 in $\mathbb{Q} \implies a_1 * a_2 * ... * a_{m+k} = b$ in \mathbb{Q}^{Δ} .
2' $a, b \in \mathbb{Q}$, $a \sim b \implies a = b$.

In other words, by 2' we can assume that Q is a subset of Q^{Δ} .

For the class of m k-semigroups, we have the following result.

Theorem: If $P = (P; \bullet)$ is a semigroup, such that $Q \subseteq P$ and

$$f(a_1^{m+k}) = b$$
 in $\mathbb{Q} \implies [a_1 \bullet a_2 \bullet \dots \bullet a_{m+k} = \stackrel{m}{b} \land a_1 \bullet a_2 \bullet \dots \bullet a_{m+k} = b]$ in \mathbb{P} .

Then the inclusion $a \mapsto a$ of Q into P can be uniquely extended to a homomorphism from \mathbb{Q}^{Δ} into P.

Proof. Let
$$\varphi: Q^{\Delta} \to P$$
 be defined by: $\varphi(a) = a$, $\varphi(a'_1) = a_1 \bullet a_2 \bullet ... \bullet a_t$

for every $a \in Q$ and $a_1^t \in Q^{\Delta}$.

We will show that φ is a well-defined mapping. Let $a_1^t = b_1^s$.

1) If
$$a_1^t = a_1^i a_{i+1}^m a_{i+m+1}^t$$
, $b_1^s = a_1^i a_{i+1} a_{i+m+1}^t$, and, there is $c_1^{m+k} \in \mathbb{Q}^{m+k}$, such that $f(c_1^{m+k}) = a_{i+1}$, then:

$$\varphi(a_1^t) = a_1 \bullet a_2 \bullet \dots \bullet a_i \bullet a_{i+1}^m \bullet \dots \bullet a_t = a_1 \bullet a_2 \bullet \dots \bullet a_i \bullet c_1 \bullet \dots \bullet c_{m+k} \bullet \dots \bullet a_t$$
$$= a_1 \bullet a_2 \bullet \dots \bullet a_t \bullet a_{t+1} \bullet \dots \bullet a_t = \varphi(b_1^s).$$

2) Let
$$a_1^t = u_0 \approx u_1 \approx ... \approx u_r = b_1^s$$
. Then, by 1),
 $\varphi(a_1^t) = \varphi(u_0) = \varphi(u_1) = ... = \varphi(u_r) = \varphi(b_1^s)$.

Now, we will show that φ is a homomorphism.Let $a_1^t, a_{t+1}^s \in \mathbb{Q}^{\Delta}$.

1) s < m+k

$$\varphi\left(a_1^t * a_{t+1}^s\right) = \varphi\left(a_1^s\right) = a_1 \bullet a_2 \bullet \dots \bullet a_t \bullet a_{t+1} \bullet \dots \bullet a_s = \varphi\left(a_1^t\right) \bullet \varphi\left(a_{t+1}^s\right).$$

2) $s \ge m+k$. Then, $\varphi(a_1^t * a_{t+1}^s) = \varphi(c * a_{m+k+1}^s)$, where $c = f(a_1^{m+k})$. We can assume that $s-m-k+1 \le m+k$ and then, we have:

$$\varphi\left(c*a_{m+k+1}^{s}\right) = \varphi\left(ca_{m+k+1}^{s}\right) = c \bullet a_{m+k+1} \bullet ... \bullet a_{s} = a_{1} \bullet a_{2} \bullet ... \bullet a_{t} \bullet a_{t+1} \bullet ... \bullet a_{m+k} \bullet a_{m+k+1} \bullet ... \bullet a_{s}$$

$$= \varphi\left(a_{1}^{t}\right) \bullet \varphi\left(a_{t+1}^{s}\right).$$

In other words, \mathbf{Q}^{Δ} is the universal semigroup of $\mathbf{Q} = (\mathbf{Q}; f)$.

As a consequence of the last theorem, we obtain the Post's Theorem for $m \mid k$ -semigroups, i.e. every $m \mid k$ -semigroup can be embedded in a semigroup.

References

- [1] G. Čupona: Vector valued semigroups, Semigroup Forum, Vol. 26 (1983), 65-74.
- [2] G. Čupona, N. Celakoski, S. Markovski, D. Dimovski: Vector valued groupoids, semigroups and groups, MANU, Vector valued semigroups and groups, Skopje, 1988, 1–78.
- [3] G. Čupona, S. Markovski, B. Janeva: Post Theorem for vector valued semigroups, Proc. Conf. "Algebra and Logic", Cetinje, 1986, 33-46.